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ABSTRACT 

 This paper investigates the performance of soundings generated from the National 

Centers for Environmental Prediction’s Short Range Ensemble Forecast (NCEP SREF).  The 

NCEP SREF is an operational ensemble forecast model with 15 members.  Rank histograms are 

used as the primary tool to investigate consistent bias problems as well as ensemble dispersal.  

For the period spanning 1 May 2003 and 19 July 2003, nine different locations scattered about 

the continental U.S. are validated with rawinsonde data.  Ensembles modified by a lagged bias 

correction and ensembles modified by both a lagged bias correction and the addition of 

observational errors are considered. 

 Rank histograms constructed from the unmodified ensemble imply either severe bias 

problems in the ensemble or a significantly underdispersed ensemble, depending on the variable 

examined, forecast time, pressure level, and location.  Because forecasts between the different 

locations are poorly correlated, the assumption of independence is acceptable and rank 

histograms for each location are merged into combined rank histograms for all cities for a given 

variable, forecast time, and pressure level to produce adequate sample sizes.  Combined rank 

histograms constructed from the bias corrected ensemble are U-shaped, which may be caused 

either by an under-dispersed ensemble, a non-homogeneous bias structure, or observational 

errors.  However, including observational errors with the bias correction often results in uniform, 

or occasionally over-dispersed, rank histograms.  Analysis of other factors, including the non-

homogeneous biases of the ensemble, is shown to help understand the combined rank 

histograms.  Without the bias correction, this ensemble if of limited utility, but the lagged bias 

correction greatly enhances the ensemble performance. 

 



1.  Introduction  

An ensemble forecast is a collection of forecasts that verify at the same time.  Each 

member may consist of identical models initialized with different, but equally plausible, initial 

conditions, different models, or identical models with differing parameterizations (Sivillo et al. 

1997).  An ensemble may contain as few as two members, but typically contain many more.  

Among the objectives of ensemble forecasting is to improve forecasting skill on a case by case 

basis, which is forecast accuracy (Murphy, 1993), through averaging.1     

 The ensemble evaluated here is provided by the National Centers for Environmental 

Prediction (NCEP).  This ensemble contains 15 individual models, which can be equally divided 

into three model families.  The three model families in this ensemble are the Eta, the Kain-

Fritsch Eta, and the regional spectral model, or RSM.  All of the models in this ensemble are run 

with 48 km horizontal grid resolution1.  The perturbations for these models are generated by the 

breeding method1.  This study evaluates the ensemble to determine if the distribution of forecasts 

matches the distribution of verifying observations as a function of height. 

 One quality of an accurate forecast is a match between the distributions of the forecasts 

and verifying observations.  By definition, an ensemble provides a range of possible forecast 

values for a certain variable at a given location and time; however, only an accurate ensemble 

will consistently forecast an acceptable range of values (e.g., Sivillo et al. 1997).  An example of 

an ensemble forecast of the 850-hPa temperature at a given location 15 hours in the future may 

range from 290 K to 295 K.  An ensemble forecast output can also be processed to a probabilistic 

forecast (e.g., Hamill 2001).  Ranges of forecast values and probabilistic forecasts are two of the 

most powerful products provided by ensemble forecasts. 

                                                 
1 Source:  http://wwwt.emc.ncep.noaa.gov/mmb/SREF/FCST/DOC/present4/main.htm,  

http://wwwt.emc.ncep.noaa.gov/mmb/SREF/FCST/DOC/present4/main.htm


 Rank histograms are among the tools used to evaluate the performance of this ensemble.  

The first step in constructing a rank histogram is to rank the individual forecasts of an n-member 

ensemble for a given variable at a given location, pressure level,  and forecast time, from lowest 

value to highest value, forming a sorted list (e.g., Hamill 2001).  Next, the verifying observation 

is included in the sorted list, which now contains n+1 values.  There are n+1 possible ranks for 

the observation in this sorted list; the rank of the verifying observation is defined as one if its 

value is less than the ensemble member with the lowest rank and n+1 if its value is greater than 

the ensemble member with the highest rank.  A rank histogram is constructed by summing the 

rank of the verification, or tally, over all days into one histogram for one given variable, location, 

pressure level, and forecast time (Hamill, 2001).  The x-axis on a rank histogram consists of the 

observation rank, while the y-axis consists of the total number of days that the observation had 

that rank. 

Interpretation of rank histograms may provide insight into the accuracy of the ensemble.  

A uniform rank histogram may imply that both the ensemble and the verification are drawn from 

indistinguishable distributions, whereas a non-uniform rank histogram implies that the ensemble 

and verification are drawn from different distributions (Hamill 2001).  Rank histograms may 

allow for a quick diagnosis of problems within an ensemble, especially with the variability of the 

ensemble.  For example, a rank histogram with high frequency counts at both extremes suggests 

one of several problems (Fig. 1).  The ensemble may be underdispersive (e.g., Hamill and 

Colucci, 1997), there may be errors in the observational data (Hamill 2001), or systematic errors 

in the forecast may be present (Hamill and Colucci, 1997).  Another possibility is a combination 

of these problems is creating the observed shape in the rank histogram.   



Another problem is indicated when a rank histogram has high frequency counts near one 

extreme and low frequency counts near the other extreme; this is a symptom of a consistent bias 

in the ensemble.  A rank histogram with high frequency counts near the center, but low 

frequency counts at the extremes suggests too much variability in the ensemble; a more precise 

ensemble may be necessary.  Rank histogram uniformity may be tested statistically with a chi-

squared goodness-of-fit test (e.g., Hamill and Colucci, 1997).  Rank histograms that are 

consistently uniform suggest an accurate ensemble.  This significance test has been effectively 

used in interpretations of rank histograms in past studies (Hamill and Colucci, 1997). 

Ensembles have been evaluated using rank histograms in the past; these studies provide 

motivation for this investigation (Hamill and Colucci, 1997).  Hamill and Colucci (1997) focus 

not only on the accuracy of the ensemble, but also on a comparison between a 15-member 

ensemble, with less resolution than the current ensemble, and a 29-km mesoeta model.  They 

also considered precipitation, which is not considered here.   

Section 2 of this paper presents the data used for this research.  Section 3 presents the 

results of this research.  Rank histograms, along with modifications to the ensemble, will be 

presented in this section.  Section 4 will provide a conclusion, including some discussion into the 

applications of this research. 

Section 2.  Data and Methodology 

 This study utilizes verification soundings and model soundings.  The verification data 

comes from the Forecast Systems Laboratory’s web site for radiosonde data, which is currently 

http://raob.fsl.noaa.gov; the model data comes from NCEP.  Model data are specific to the 

location of interest.  Nine radiosonde sites, distributed about the continental US, were selected as 

locations to evaluate the validation of this ensemble (Fig. 2).  Model data span 1 May 2003 



through 18 July 2003, while verification data span 2 May 2003 through 19 July 2003.  Days are 

missing due to either missing forecast data or verification data.  NCEP’s ensemble forecast is run 

at 0900 UTC and 2100 UTC every day with forecasts out to 63 hours; only the 0900 UTC 

forecast cycle is used here.  Hence, forecast soundings for 15 hours, 39 hours, and 63 hours are 

validated because these forecasts all verify at 0000 UTC, for which verification soundings are 

available. 

The soundings in both data sets contain pressure, temperature, dewpoint, wind direction, 

wind speed, and geopotential height.  The model soundings have 50 hPa vertical resolution, 

while the verification soundings are linearly interpolated to every 50 hPa. The lowest pressure 

level used for most sites is 950 hPa (except 900 hPa for OTX and TUS, and 800 hPa for RIW), 

while the highest pressure level used is 150 hPa for all sites.  The soundings contain dewpoint, 

which is converted to mixing ratio, wind speed and direction, which are converted to u and v 

components, temperature and geopotential height, all of which are used in the construction of the 

rank histograms.   

Rank histograms are constructed for each variable, location, forecast time, and pressure 

level.  Rank histograms for all locations for a given variable, forecast time, and pressure level are 

combined, under the assumption that the selected radiosonde sites are statistically independent, 

even though this is not strictly the case.  All sites are separated by at least several hundred 

kilometers, which should severely limit any spatial correlation (Hamill and Colucci, 1997).  

Statistical independence between sites is necessary to interpret a combined rank histogram for a 

given variable, forecast time, and pressure level (Hamill 2001).  These combined rank 

histograms contain more tallies, which reduces problems associated with the small sample sizes 

in the individual site rank histograms (Hamill and Colucci, 1997).   



The range of the ensemble is examined to obtain an understanding of the changes in the 

spread of the ensemble as the variable, location, forecast time, and pressure level are changed.  

The 95% confidence interval for the range of the ensemble over all days is obtained through a t-

test. 

Section 3.  Results 

 The range describes the spread of the ensemble and can be used to determine how the 

ensemble output changed as the variable, location, forecast time, and pressure level changed.  A 

high range suggests a large spread in the ensemble and high uncertainty, while a low range 

suggests a small spread in the ensemble and lower uncertainty.  The 95 percent confidence 

interval for the range, which is defined as the minimum value subtracted from the maximum 

value, is calculated and plotted, along with the mean range, as a function of height for a given 

variable, location, and forecast time.  Figure 3 shows an example of the range of the ensemble 

for temperature for all forecast times at CHH, MFL, and IAD.  There are many pressure levels 

where at least two of the confidence intervals for different locations intersect for the same 

variable and forecast time, which suggests that the ranges at these different locations are 

statistically equal at these pressure levels where the intersections occur.  The range of the 

ensemble increases as forecast lead time increases, regardless of variable, forecast time, and 

location.   The range of the ensemble changes as height increases, regardless of variable, forecast 

time, and location. 

 Three sets of rank histograms are examined:  one set uses raw model data, another set 

uses a bias correction applied to ensemble members, and a final set adds noise to the model data.  

These modifications are discussed by Hamill and Colucci (1997) and Hamill (2001), 

respectively.  The bias correction is used to improve the performance of this ensemble, while the 



addition of noise to the model data is only used to counteract observational errors and provide a 

proper validation. 

For mixing ratio from the raw ensemble, most of the tallies in the combined rank 

histograms fall into the first rank at pressure levels near the surface, which implies a moist bias; 

these rank histograms are U-shaped from 700 hPa to 500 hPa for 15 and 39-hour forecasts, 

which implies either an under-dispersed ensemble, a biased ensemble, or systematic errors in the 

forecast (Fig. 4).  An under-dispersed ensemble is implied in most of the 63-hour forecast 

combined rank histograms for mixing ratio; exceptions include the pressure levels from 350 hPa 

to 250 hPa, where a moist bias in the ensemble is implied.  For temperature, most of the tallies in 

the combined rank histogram are contained in the first rank, which implies a warm bias (Fig. 4), 

except for U-shaped rank histograms in the 63 hour forecasts from 500 hPa through 300 hPa.  

For geopotential height, most of the tallies in the combined rank histograms fall in the first rank, 

which implies a positive bias in the ensemble.  In the combined rank histograms for u and v 

components of the wind, an underdispersive ensemble is implied over all pressure levels and 

forecast times (Fig. 4).  Individual site rank histograms are examined to find a possible 

explanation for the shapes of these combined rank histograms. 

When the individual site rank histograms for the u and v components of the wind are 

examined, an under-dispersed ensemble is not the only explanation for the U-shaped combined 

rank histograms.  For the u component of the wind, except for 900 hPa, the individual site rank 

histograms for Miami for all forecast times and at pressure levels near the surface, a negative 

bias (most tallies in the 16 rank) in the ensemble is implied (Fig. 5), while an under-dispersed 

ensemble is implied by the individual site rank histograms above 650 hPa.  In Spokane, a 

positive bias (most tallies in the 1 rank) in the ensemble is implied by the individual site rank 



histograms for all pressure levels and forecast times, except at 900 hPa and at 800 hPa through 

500 hPa, where an under-dispersed ensemble is implied by the individual site rank histograms 

(Fig. 5).  In Minneapolis, a positive bias in the ensemble is implied by the individual site rank 

histograms near the surface (Fig. 5), except 900 hPa, and a negative bias in the ensemble is 

implied above 350 hPa.  In Tucson, a positive bias in the ensemble is evident at pressure levels 

near the surface (Fig 5), except for 900 hPa, while a negative bias in the ensemble is implied 

above 500 hPa.  Individual site rank histograms for the v component of the wind typically show 

various biases in the ensemble at different locations and different pressure levels.  The biased 

combined rank histograms will not be examined further because a bias in the ensemble is clearly 

the cause of the shape of the rank histogram; possible explanations for the U-shaped rank 

histograms will be covered in the next section 

Each model family could contain a different bias.  Hence, the 95% confidence interval 

and the mean bias for a given family is calculated over all days for a given variable, location, 

forecast time, and pressure level.  Figure 6 shows an example of how the biases for the three 

model families can change as a function of height.  Differences in the biases among the three 

model families at different heights are noted for different variables, locations, and forecast times.  

Differing biases among the model families comprising the ensemble can complicate the 

interpretation of the rank histograms (Hamill, 2001). 

Another feature of note is the rank histograms, both individual site and combined, for the 

150-hPa level.  These combined rank histograms imply both positive and negative biases, 

regardless of the combined rank histograms for other pressure levels for the same variable and 

forecast time.  An example of a 150-hPa level combined rank histogram that is different from 

other rank histograms at different pressure levels for the same variable and forecast time is the 



combined rank histogram for temperature for a 63-hour forecast (Fig. 7).  One explanation for 

the shapes of these rank histograms involves the inability of models to provide an accurate 

forecast at this level in the atmosphere.  Another possible explanation involves our inability to 

accurately observe the high levels of the atmosphere. 

Many rank histograms, both individual and combined, imply non-homogeneous biases in 

the ensemble; a bias correction is the first modification to the model data.  A mean seven-day 

lagged bias is calculated every day for each individual model, variable, location, forecast time, 

and pressure level.  This lagged bias is added to the forecasted value for the given model, current 

day, correct pressure level, variable, location, and forecast time. 

  Various lag intervals were examined.  Qualitatively, a seven-day lagged bias is more 

effective than a four, five, or six day lagged bias.  Lag intervals greater than seven days are not 

considered.  The shapes of many of the rank histograms change from sloped to U-shaped when 

this seven-day lagged bias correction is applied (Fig. 8).  This simple bias correction proves a 

very effective way to remove bias from the ensemble.  However, the rank histograms still show 

underdispersion.  Based on Hamill’s (2001) work, the apparent underdispersion may be illusory.   

 According to Hamill (2001), it might be necessary to add random noise to the model data 

to counteract random, nonbiased errors in the verification data.  Hence, noise is added to the 

model soundings based on error estimates in Zapotocny et. al (2000).  The rank histograms 

created from this ensemble with the noise addition are significantly different from rank 

histograms without noise.  Rank histograms that include observational error do not suffer 

underdispersion as often as uncorrected rank histograms.  In some cases, the resulting rank 

histograms suggest an overdispersive ensemble; nearly all of these rank histograms with 

overpopulated middle ranks were constructed from 15-hour forecasts (Fig. 9).  However, nearly 



all of the combined rank histograms for mixing ratio still show a significantly under-dispersed 

ensemble; these U-shaped rank histograms may be the result of the difficulty to accurately 

predict and measure moisture in the atmosphere.  Far fewer combined rank histograms for any 

other variable were U-shaped when both modifications were added to the model data.  In fact, 

many of the combined rank histograms are nearly uniform, as shown by a chi-squared goodness-

of-fit test with a rejection criterion equal to 0.05 (Table 2).  None of the combined rank 

histograms passed a chi-squared goodness-of-fit test before any modifications were added to the 

ensemble.  The null hypothesis for a chi-squared goodness-of-fit test is that the given distribution 

is statistically uniform, while the alternative distribution is that the given distribution is not 

uniform.  Over 47% of the combined rank histograms with the 15-hour forecast lead time did not 

reject the null hypothesis.  Nearly 51.5% of the combined rank histograms with the 39-hour 

forecast lead time did not reject the null hypothesis.  Over 41% of the combined rank histograms 

with the 63-hour lead time did not reject the null hypothesis.  All of the rank histograms from the 

ensemble without any modifications rejected the null hypothesis and were not statistically 

uniform; the modifications to the ensemble produced an increase of 46.57% in the number of 

rank histograms that did not reject the null hypothesis and are considered to be statistically 

uniform, regardless of forecast time.  Many of the rank histograms that rejected the null 

hypothesis had a p-value that was near 0.05, except for the rank histograms constructed for 

mixing ratio.  Most of the mixing ratio rank histograms had p-values that were very close to zero. 

 

Section 4.  Conclusion 

 The distributions of the forecasts and verifying observations are clearly distinct for the 

raw ensemble output.  However, the models within this ensemble have biases, which are not 



always equivalent.  Many of the combined rank histograms for geopotential height, mixing ratio, 

and temperature imply a significant bias in the ensemble, while a small number of other 

combined rank histograms for the same variable and forecast time, but at different pressure 

levels, imply an under-dispersed ensemble.  Individual site rank histograms clearly reveal non-

homogeneous biases within the ensemble.  Hence, the combined rank histograms that resulted 

from the individual site rank histograms become ambiguous.  For example, the combined rank 

histograms for the u and v components of the wind imply an under-dispersed ensemble, while the 

individual site rank histograms for these two variables imply different biases in the ensemble at 

different locations and different pressure levels.  In addition, the model families exhibit different 

biases at different heights for different variables, locations, and forecast times, which 

complicates rank histogram interpretation.  According to Hamill (2001), when rank histograms, 

constructed from an ensemble whose members have different biases, are combined, the resulting 

rank histogram may erroneously suggest an under-dispersed ensemble, which appears to be the 

case here for u and v.   Yet, even though the ensemble has different biases at different locations 

and pressure levels, the ensemble may still be under-dispersed and the shape of the combined 

rank histogram may be a result of the opposite biases and the lack of variability in the ensemble.   

 However, when the lagged bias correction is applied to the model data, many of the 

combined rank histograms change from implying a bias to implying an under-dispersed 

ensemble.  Some combined rank histograms that imply a severely under-dispersed ensemble 

before the bias correction change to imply a less-severe underdispersion problem when the 

lagged bias correction is added to the model data.  Even though many of the combined rank 

histograms still imply an under-dispersed ensemble, the performance of the ensemble appears to 



improve with the addition of the lagged bias correction.  Hence, applying the bias correction is 

an important post-processing step for the NCEP SREF. 

 There is a significant change in the appearance of both the combined rank histograms and 

the individual site rank histograms after observational noise is added to the model data.  

However, too much noise will result in rank histograms that are incorrectly uniform or 

incorrectly imply an over-dispersive ensemble, and too little noise will not effectively counteract 

the errors inherent in the verifying observations.  However, these modifications clearly improve 

the validation statistics for the ensemble.  Before modification, none of the ensembles pass a chi-

squared goodness-of-fit test, but after modification, 47.06% of the 15-hour forecasts, 51.47% of 

the 39-hour forecasts, and 41.18% of the 63-hour forecasts passed a chi-squared goodness-of-fit 

test.  If the noise addition is appropriate, these rank histograms imply that if a bias correction is 

applied to this ensemble, the performance of the ensemble is, in fact, quite good.     

 Without a bias correction, the ensemble provides poor forecast guidance.  The addition of 

a bias correction to the ensemble appears to significantly enhance the ensemble’s utility.  This is 

not the case when accounting for observational errors.  Noise is only used to assess the accuracy 

of the ensemble by counteracting the errors that cannot be avoided in the collection of the 

observational data; including observational errors is inappropriate operationally because, ideally, 

a forecast should be made for weather, not observations.  The goal of an individual forecast is to 

accurately predict the actual weather, not the errors in the observations.  Observational errors are 

used only in assessing the statistical performance of the ensemble.   
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(a)   (b)   
 

   
(c)   (d) 
 
Figure 1.  Examples of the four main shapes of rank histograms and the problem with the ensemble from which each 
rank histogram was constructed.  (a).  Example of a rank histogram constructed from an ensemble with a cold bias.  
(b).  Example of a rank histogram constructed from an ensemble with a warm bias.  (c).  Example of a rank 
histogram constructed from an over-dispersed ensemble.  (d).  Example of a rank histogram constructed from an 
under-dispersed ensemble. 
 

 
 
 

 



 
 
Figure 2.  Map of the United States showing the locations of the nine radiosonde sites. 
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Figure 3.  Changes in the range of the ensemble at CHH, IAD, and MFL and several different pressure levels for 
temperature for 15, 39, and 63-hour forecasts.  The three lines for each model family correspond to the 95% 
confidence interval and mean bias.  (a).  Range of the ensemble for a 15-hour forecast.  (b).  Range of the ensemble 
for a 39-hour forecast.  (c).  Range of the ensemble for a 63-hour forecast. 
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(c)         (d) 

 
Figure 4.  Combined rank histograms constructed from the ensemble without any modifications.  
(a).  Combined rank histogram possibly implying an under-dispersed ensemble for mixing ratio at 600 hPa for a 
39-hour forecast.. (b).  Combined rank histogram implying a warm bias in the ensemble for temperature at 650 
hPa for a 63-hour forecast. (c).  Combined rank histogram possibly implying an under-dispersed ensemble for u 
component at the 750 hPa level for a 39-hour forecast.  (d)  Combined rank histogram possibly implying an 
under-dispersed ensemble for v component at 650 hPa for a 63-hour forecast. 
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(c)  (d) 
 
Figure 5.  Individual site rank histograms constructed from the ensemble without any modifications for four sites for 
the u component at 800 hPa for a 15-hour forecast.  (a).  Individual site rank histogram for Miami, FL.  (b).  
Individual site rank histogram for Spokane, WA.  (c).  Individual site rank histogram for Minneapolis, MN.  (d).  
Individual site rank histogram for Tucson, AZ. 
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Figure 6.  Changes in the bias of each model family as a function of height.  The three lines for each model family 
correspond to the 95% confidence interval and mean bias.  (a).  An example of model families exhibiting similar 
biases is MFL for the u component for a 15-hour forecast.  (b).  An example of model families exhibiting different 
biases is MFL for temperature for a 63-hour forecast. 
 



 
(a) 

 

 
(b) 

 
Figure 7.  (a).  Combined rank histogram for temperature at the 150-hPa pressure level for a 63-hour forecast.  No 
modifications were made to the ensemble.  (b).  Combined rank histogram for temperature at the 150-hPa pressure 
level for a 63-hour forecast.  No modifications were made to the ensemble. 
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Figure 8.  Combined rank histograms for temperature at 700 hPa for a 63-hour forecast.  
(a).  Combined rank histogram constructed from the ensemble without the seven-day lagged bias correction.   
(b).  Combined rank histogram constructed from the ensemble with the seven-day lagged bias correction applied. 



 
(a)  (b) 

   
(c)  (d) 

Figure 9.  Combined rank histograms, all of which were constructed from the ensemble with both modifications.  
(a).  Combined rank histogram for mixing ratio at 850 hPa for a 15-hour forecast.  (b).  Combined rank histogram 
for temperature at 600 hPa for a 39-hour forecast.   (c).  Combined rank histogram for temperature at 450 hPa for a 
15-hour forecast.  (d).  Combined rank histogram for v component at 200 hPa for a 63-hour forecast. 
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Figure 10.  Combined rank histograms for temperature at 550 hPa for a 63-hour forecast.   
(a).  Combined rank histogram constructed from the ensemble without the seven-day lagged bias correction or the 
addition of noise to the model data.  (b).  Combined rank histogram constructed from the ensemble with the seven-
day lagged bias correction, but not the addition of noise to the model data.  (c).  Combined rank histogram 
constructed from the ensemble with both the seven-day lagged bias correction and the addition of noise to the model 
data. 
 

 
 
 
 
 
 
 
 
 
 
 



Table 1.  Results of the Chi-Squared Goodness of Fit Test that was completed on the combined rank histograms 
constructed from the ensemble with both modifications.  The pressure levels are at the top of the table, while the 
names of the combined rank histograms are along the left side of the table.  The null hypothesis for this significance 
test was that a uniform distribution and the rank histogram being tested are statistically equal; the alternative 
hypothesis is that there these two distributions are not equal.  An X denotes where the null hypothesis was not 
rejected.  A U denotes where the rank histogram was U-shaped.  An O denotes where the rank histogram implies an 
over-dispersed ensemble. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 


