
 

Estimating divergence from irregularly spaced observations:  
A comparison of three techniques 

 
 

 

 

Jacqueline A. Dubois 
REU and School of Meteorology, University of Oklahoma, Norman, Oklahoma 

 

 

Phillip L. Spencer* 
Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma 

 

*Also affiliated with the NOAA/OAR National Severe Storms Laboratory, Norman, OK 

 

 

 

 

Research Experiences for Undergraduates Final Project 

31 July 2004 

 

 

 

 

  ________ 
Corresponding author address:  Jacqueline A. Dubois, 408 Settlers Drive, Lawrence, KS 66049 
Email: jackiedubois@ou.edu                



 2

Abstract 

 

Three methods for estimating gridded fields of divergence from irregularly spaced 

wind observations are evaluated by sampling analytic fields of cyclones and anticyclones 

of varying wavelengths using a surface network.  For the finite differencing method, 

divergence is computed from the objectively analyzed horizontal wind field.  For the 

triangle method, which requires a triangular tessellation of the station network and 

assumes that the wind varies linearly within each triangle, divergence estimates are 

obtained directly from the wind observations and are assumed valid at triangle centroids.  

These irregularly spaced centroid divergence estimates then are analyzed to a grid.  For 

the pentagon method, which requires a pentagonal tessellation of the station network and 

assumes that the wind varies quadratically within each pentagon, divergence estimates 

are obtained directly from the wind observations and are valid at the station lying within 

the interior of each pentagon.  These irregularly spaced divergence estimates then are 

analyzed to a grid.   

Results support previous studies showing that the triangle method provides 

analyses with lower root-mean-square errors that those of the finite differencing method.  

We find that for all wavelengths considered, the triangle method provides better analyses 

than the pentagon method, as well, despite the more restrictive assumption by the triangle 

method regarding the wind field.  However, for most wavelengths considered, we find 

that the divergence estimates at the interiors of pentagons are superior to those at triangle 

centroids. 
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1. Introduction 

Obtaining accurate estimates of spatial derivatives from observed data is 

important in meteorology.  For example, divergence, comprised of a combination of 

spatial derivatives of the wind field, appears in numerous diagnostic equations such as 

those involving mass continuity, vorticity tendency, and moisture convergence. Thus, the 

accuracy of the diagnosis depends on the accuracy of the divergence estimates. Because 

many techniques are available for estimating gridded fields of divergence from 

irregularly spaced wind observations, it is important to understand the strengths and 

weaknesses of each technique and the conditions under which each method may be 

preferred. 

The purpose of this study is to compare three techniques for computing gridded 

fields of divergence: the finite differencing method, the triangle method, and the 

pentagon method.  Each of the three methods involves two basic procedures: derivative 

estimation and the application of an analysis scheme.  An important difference between 

the three techniques is that these two basic procedures are not performed in the same 

order.  Specifically, for the finite differencing method, an analysis scheme is applied to 

the wind observations and then a finite differencing scheme is used to estimate 

divergence.  In contrast, for the triangle and pentagon methods, divergence estimates are 

obtained directly from the wind observations and then an analysis scheme is used to map 

the estimates onto a grid. 

Previous studies have shown that the triangle method for obtaining gridded 

divergence estimates generally is superior to the finite differencing method (e.g., 

Schaefer and Doswell 1979; Doswell and Caracena 1988; Spencer and Doswell 2001, 
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hereafter SD01).  Much of this study follows the same approach as SD01, whereby a 

comparison between the analyses and an analytically-prescribed divergence field 

quantifies the effectiveness of each of the methods.  In contrast to SD01, our work 1) 

incorporates a real observation network and 2) evaluates the pentagon method, comparing 

its analyses to those of the finite differencing and triangle methods. 

 Section 2 describes how analytic observations are created.  Section 3 gives a 

description of each of the three methods considered.  The results of the evaluations are 

presented in section 4.  Section 5 contains a brief summary. 

 

2. Creating analytic observations 

Observations are created by sampling analytic functions at the stations indicated 

in Fig. 1.  The advantage of using analytic wind fields is that the true divergence values 

are known everywhere in the region, making it easy to compare the relative merits of the 

three methods.  The stations in Fig. 1 represent a set of declustered surface observation 

locations whose average separation (∆) is approximately 125 km.  The horizontal 

components of the analytic wind field (ua,va) are represented by the following equations: 

 

                                       





 −






 −= yxa y

L
x

L
yxu φπφπ 2sin2cos10),(       (1a) 

                           





 −






 −= yxa y

L
x

L
yxv φπφπ 2cos2sin10),(  ,        (1b) 

where L is the wavelength.  From (1), the analytic divergence ( aδ ) is easily derived as: 
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This represents a checkerboard pattern of cyclones and anticyclones.   
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3. Methods for computing gridded fields of divergence 

a. Finite differencing method 

For the finite differencing method, wind observations are analyzed to a 34x30 

grid using a 3-pass Barnes objective analysis scheme (hereafter, BOA3; Barnes 1964, 

1973; Achtemeier 1987, 1989).  The BOA3 weighting function is given by 
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where wk is the weight of the kth observation, Rk is the distance between an observation 

and a gridpoint, and ci is the smoothing parameter used during the ith analysis pass.  The 

nominal grid spacing is 40 km. 

Following the suggestion of Achtemeier (1989), we use a relatively large value of 

the smoothing parameter for the first pass (c1 = 1.75).  The shape parameters for the two 

correction passes are chosen such that c2 = c3 ≡ c2,3.  In order to determine the value of 

c2,3 that provides the best analysis, as measured by root mean square error and correlation 

coefficient (section 4a), c2,3 is varied from 0.5 to 2.5 in increments of 0.1.  No "cutoff 

radius" is used in our analysis scheme. 

After BOA3 is applied, a fourth-order centered finite differencing scheme is used 

to estimate the divergence of the gridded wind field.   

 

b. Triangle method  

The triangle method requires a triangular tessellation of the station network.  To 

accomplish this, the Delauney triangulation scheme is used to create a set of non-

overlapping triangles (Ripley 1981).  Four nearby stations comprise a quadrilateral, of 
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which competing triangular tessellations exist.  The Delauney triangulation scheme 

selects the set of triangles with the largest minimum angle from the two competing 

tessellations.  Also, the scheme requires that the nearest observation from any point 

within a given triangle be one of the vertices of that triangle.  The triangular tessellation 

of the station network shown in Fig. 1 is presented in Fig. 2. 

The triangle method assumes a linear variation of the wind field within each 

triangle.  Therefore, the horizontal wind components at the ith station comprising a 

triangle (ui,vi) can be represented by a linear Taylor series: 
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where (uc, vc) represent the horizontal wind components at the triangle centroid located at 

(xc, yc), ∆xi=(xi-xc), and ∆yi=(yi-yc).   For each triangle, the system of six equations and 

six unknowns is solved for the unknown gradients, from which divergence is computed.  

The irregularly spaced divergence estimates at the triangle centroids then are analyzed to 

the 34x30 grid using BOA3.  It is important to note that divergence values from the 

triangle method are estimated directly from the wind observations and then analyzed to 

the grid. 

 

c. Pentagon method 

The pentagon method requires a pentagonal tessellation of the station network.  

Since no automated routine was available, this task was performed by hand such that 

each observing station (except those along the border of the domain) is enclosed within 
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five nearby stations forming a pentagon.  The general guidelines for forming each 

pentagon were to 1) minimize the area of the pentagon and 2) place the interior station as 

near as possible to the center of the pentagon.  A few such pentagons are shown in Fig. 3.  

Following Chien and Smith (1973), the horizontal wind components at the ith station 

comprising a pentagon (ui,vi) can be represented by a second-order Taylor series: 
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where (u0, v0) are the horizontal wind components at the interior station located at (x0, 

y0), ∆xi=(xi-x0), and ∆yi=(yi-y0).  The system of ten equations and ten unknowns is solved 

to yield an estimate of the divergence at the interior station of each pentagon.  The 

irregularly spaced divergence estimates then are analyzed to the grid using BOA3.  We 

emphasize that, as in the triangle method, the divergence values are estimated directly 

from the observations and then analyzed to the grid.   

 

4. Comparison of the three methods 

 The root-mean-square error (rmse) and Pearson correlation coefficient are used to 

quantify the results of the three methods.  Each method is applied to four variations of the 

analytic wind field (L=5∆, L=10∆, L=15∆, and L=20∆) using various values of c2,3 as 

described in section 3a. The correlation coefficient provides a better measure of the 

correctness of the pattern of an analysis than does the rmse, whereas the rmse provides a 

better measure of correctness of the amplitude of an analysis.  These error statistics are 

calculated at the triangle centroids and interior stations of pentagons (i.e., before BOA3 
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scheme is applied) as well as from the gridded analyses (i.e., after the BOA3 scheme is 

applied).  We define the “best” method at each of the wavelengths as that which produces 

the lowest rmse and/or the highest correlation coefficient. 

   

a. Error estimation 

 The root-mean-square error (rmse) computed from an analysis is defined as 

follows: 

g

ji
ag

N
rmse

∑ −
= ,

2)( δδ
,    (6) 

 

where Ng represents the number of grid points in the verification domain, δg represents a 

divergence analysis, and δa represents the analytic divergence at gridpoints.  In order to 

avoid contamination of the rmse by boundary errors, the verification domain is limited to 

the innermost one-half of the analysis domain.  A similar equation is used to compute 

rmses at triangle centroids and at the interior stations of pentagons. 

 The correlation coefficient computed from an analysis is defined as follows: 
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where gδ  represents the average value of the analysis and aδ  represents the average 

value of the analytic field (Wilks 1995).  This statistic is calculated over the same domain 

as the rmse.  
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b. Results   

 Figures 4 and 5 illustrate the differences in the three methods for L=10∆ and 

L=20∆, waves considered marginally well-sampled and well-sampled, respectively 

(Doswell and Caracena 1988).  For L=10∆ (Fig. 4), the rmse and correlation coefficient 

values indicate that the checkerboard pattern is represented best by the triangle method.  

The finite differencing method tends to produce poor divergence estimates in data void 

regions (Fig. 4b), a result consistent with Barnes (1994) and SD01.  Although the rmse 

for the finite differencing method is less than that of the pentagon method, the pattern of 

the pentagon analysis is superior, as reflected by the correlation coefficients.  For L=20∆ 

(Fig. 5), both the triangle and pentagon analyses appear to be reasonable representations 

of the analytic field, although the rmse and correlation coefficient values indicate that the 

triangle method is superior.  Again, the finite differencing analysis is clearly the poorest 

of the three.   

Several conclusions may be drawn from Fig. 6, which compares the performances 

of the three methods for various values of c2,3.  First, as the wavelength increases, the 

magnitudes of the errors for each of the methods decrease.  Errors generally decrease by 

an order of magnitude or greater as the wavelength increases from L=5∆ to L=20∆.  

Clearly, for a given observing network, longer wavelengths are sampled better than 

shorter wavelengths, thus reducing the analysis error. 

Second, the rmse values have a “U”-shaped pattern.  Generally, the lowest rmse 

values are associated with smoothing parameters falling in the range of 0.8 ≤ c2,3 ≤ 1.0.  

However, at L=5∆, slightly lower values of c2,3 are required to minimize the rmses.  

When “excessively small” smoothing parameters are used (e.g. c2,3 < 0.8), an overfitting 
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of the observations yields relatively high rmse values.  Alternately, with “excessively 

large” smoothing parameters (e.g. c2,3 >1.4), the analysis is too smooth.  In addition, 

increasingly large smoothing parameters cause boundary errors to creep towards the 

center of the domain; we have attempted to reduce these errors by restricting our 

verification domain as mentioned in the previous section.   

Third, the average rmses of the pre-analyzed divergence estimates1 at triangle 

centroids and interior stations of the pentagons (labeled “T” and “P”, respectively, in Fig. 

6) suggest that for L=5∆, the divergence estimates from the triangle method are superior 

to those of the pentagon method, whereas for larger wavelengths, the reverse is true.  

While all of the wavelengths considered are nonlinear, the L=5∆ wave is the most 

nonlinear with respect to station separation (Fig. 7).  For this reason, intuition suggests 

that at this wavelength the pentagon method should be superior to the triangle method; 

clearly this is not the case.  Apparently, for L=5∆, the linearity assumption over the 

relatively small triangles (average area = 6800 km2) is superior to the quadratic 

assumption over the relatively large pentagons (average area = 31 000 km2).  For the 

larger wavelengths (L≥10), however, the reverse is true; namely, the linearity assumption 

over the relatively small triangles is inferior to the quadratic assumption over the 

relatively large pentagons.   At the larger wavelengths, the nonlinearity with respect to 

station separation is much smaller (Fig. 7), but still large enough to allow superior 

analyses from the pentagon method.   

When the analyses are performed using BOA3, the triangle method rmse minima 

are lower than the minima from both the finite differencing and pentagon methods for all 

                                                 
1 These rmses refer to the average rmse values at the triangle centroids and interior stations of pentagons before the divergence 
estimates are analyzed to the grid via BOA3.  Since errorless observations are used, these errors represent truncation errors. 
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wavelengths (Fig. 6).  For the smaller wavelengths (L=5∆ and L=10∆), the finite 

differencing method generally outperforms the pentagon method; for the larger 

wavelengths (L=15∆ and L=20∆), the opposite is true.  Interestingly, for all wavelengths, 

the rmses of the pentagon analyses are greater than the rmses of the pre-analyzed 

divergence estimates, whereas for wavelengths exceeding L=5∆, the rmses of the triangle 

analyses are smaller than the rmses of the pre-analyzed divergence estimates.  We believe 

this to be a consequence of two factors.  First, the pentagon analysis involves only 155 

divergence estimates, whereas the triangle analysis involves 361 divergence estimates; 

the more data involved in the analysis, the less the error.  Second, because the signs of the 

errors of the triangle centroid divergence estimates are somewhat randomly distributed in 

space (Fig. 8), we believe that the analysis itself acts to reduce the effects of these errors.  

This is not true for the pentagon method, where the distribution of the signs of the errors 

generally corresponds to the pattern of the divergence field (Fig. 9).  

Figure 10 indicates that for all wavelengths considered, larger triangle and 

pentagon areas are associated with larger truncation errors.  Even a highly nonlinear field 

varies approximately linearly across small triangles such that the linearity assumption of 

the triangle method produces a reasonable estimate of the divergence.  For larger 

triangles, the degree of nonlinearity of the flow within the triangle is larger as well, 

resulting in greater errors associated with the linearity assumption.  A similar argument 

can be made for pentagon area versus error. 

 For the smallest wavelength considered (L=5∆), even the smallest pentagons, 

with their less restrictive quadratic assumption, have truncation errors exceeding those of 

small triangles (Fig. 10a).  Specifically, approximately 55 of the 361 triangles (~15%) 
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have truncation errors less than those of the smallest pentagons.  However, as the 

wavelength increases, an increasingly large number of pentagons have truncation errors 

less than those of the smallest triangles.  For example, Fig. 10b indicates that for any 

pentagon whose area is less than about 18 000 km2, the quadratic assumption is better 

than the linearity assumption for all triangles.  At L=20∆, the quadratic assumption is 

better for any pentagon whose area is less than about 38 000 km2 (Fig. 10d).   

 

5. Summary and conclusions 

This study has shown that for computing gridded fields of divergence from 

irregularly spaced wind observations, the triangle method consistently outperforms the 

finite differencing and pentagon methods when shape parameter values within the range 

generally recommended are used (e.g., c1=1.75, c2,3=1.0).  For well-sampled waves, the 

pentagon analyses clearly are superior to those from the finite differencing method.  An 

important difference between the three methods is that the triangle and pentagon methods 

apply an analysis scheme to estimates of divergence that are computed directly from the 

observations, whereas the finite differencing method computes divergence from gridded 

fields of the horizontal wind components.  Doswell and Caracena (1988) show that this 

difference produces different analyses when the observations are irregularly distributed. 

The pre-analyzed divergence estimates from the pentagon method are superior to 

those from the triangle method for wavelengths L≥10∆, but are inferior for L=5∆.  We 

find this to be an interesting―if not counterintuitive―result since the nonlinearity of the 

flow with respect to the station separation is greatest at L=5∆ and the stated purpose of 

the pentagon method is to capture a portion of that nonlinearity.   Apparently, the 
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linearity assumption over the relatively small triangles is superior to the quadratic 

assumption over the relatively large pentagons for L=5∆; the opposite is true at larger 

wavelengths.  We have found that when the BOA3 scheme is applied to the irregularly 

spaced divergence estimates at the interior stations of pentagons, the rmse values 

increase.  On the other hand, when the BOA3 scheme is applied to the irregularly spaced 

divergence estimates at the triangle centroids, the rmse values generally decrease.  We 

consider this behavior to be a consequence of both the number of irregularly spaced 

divergence estimates (361 for the triangle method and 155 for the pentagon method) and 

the smoothing effect of the BOA3 scheme on the errors of the divergence estimates from 

the triangle method. 
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Station Locations

Fig. 1. Declustered surface station network considered in the analysis.
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Triangles

Fig. 2. The Delauney triangulation of the observation network shown in Fig. 1.  For clarity, some of the triangles
along the outer edges are not drawn. 
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Sample Pentagons

Fig. 3. A sampling of the pentagonal tessellation of the observation network.
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Analytic Divergence 0.704x10-5

0.993Finite Differencing Divergence

Triangle Divergence
0.432x10-5

0.999 Pentagon Divergence
0.904x10-5

0.996

(a) (b)

(c) (d)

Fig. 4. Contour plots of divergence from the (a) analytic function, (b) finite differencing method, (c) triangle method,
and (d) pentagon method for L=10∆.  The analysis parameters are c1= 1.75 and  c2,3=1.0.  For these plots, φx = φy= 0.
In (b)-(d), observation locations are indicated by an "x".  The rmses (s-1) and correlation coefficients for the analyses
are shown in the upper right corner of (b)-(d).  The contour interval for all plots is the same.  
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Analytic Divergence Finite Differencing Divergence 0.323x10-5

0.966

Triangle Divergence 0.451x10-6

0.999 Pentagon Divergence 0.106x10-5

0.997

(a) (b)

(c) (d)

Fig. 5. Same as Fig. 4, except L=20∆, φx=-π/2, φy=π/2.

20



L=10∆

Smoothing Parameter, c2,3

0.6 0.8 1.0 2.42.22.01.81.61.41.2
RM

SE
2

8

6

4

10

12

14

16

18

20

TP

Finite differencing

Triangle

Pentagon

L=15∆

Smoothing Parameter, c2,3

0.6 0.8 1.0 2.42.22.01.81.61.41.2

RM
SE

0.5

2.5

2.0

1.5

1.0

3.0

3.5

4.0

4.5

5.0

5.5

T

P

(c) L=20∆

Smoothing Parameter, c2,3

0.6 0.8 1.0 2.42.22.01.81.61.41.2

RM
SE

1.0

0.8

0.6

0.4

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2
T

P

(d)

L=5∆

20

RM
SE

90

80

70

60

50

40

30

100

Smoothing Parameter, c2,3

0.6 0.8 1.0 2.42.22.01.81.61.41.2

T

P

(a) (b)

Fig. 6. Root mean square errors as a function of c2,3 for the finite differencing (solid curves), triangle (short-dashed 
curves), and pentagon (long-dashed curves) methods for (a) L=5∆, (b) L=10∆, (c) L=15∆, (d) L=20∆.  The "T" on
each of the plots indicates the average rmse of the pre-analyzed divergence estimates at triangle centroids.  The "P" 
represents the average rmse of the pre-analyzed divergence estimates at the interior stations of pentagons.  For all 
curves, c1=1.75.  Each of these curves represents averages of nine analyses whose phase shifts (φx, φy) are: 
(-π/4,π/4), (0,π/4), (π/4,π/4), (−π/4,0), (0,0), (π/4,0), (−π/4,−π/4), (0,−π/4), (π/4,−π/4).
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Fig. 7. Relationship between the wavelength and the ratio of the magnitude of the sum of the nonlinear terms to 
the magnitude of the sum of the linear terns from the quadratic Taylor series representation of the wind field.  As 
in Fig. 6, the curve represents averages of nine sets of analyses.
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L=10∆

L=20∆(b)

(a)

Fig. 8.  Signs of the differences between the analytic divergence at triangle centroids and the divergence 
computed from the triangle method for (a) L=10∆ and (b) L=20∆. Plus signs indicate that the computed 
divergence is greater than the analytic divergence. The analytic divergence used in (a) is the same as that 
presented in Fig. 4a and the analytic divergence used in (b) is the same as that presented in Fig. 5a.
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L=10∆

L=20∆

Fig. 9.  Signs of the differences between the analytic divergence at the interior stations of pentagons and the 
divergence computed from the pentagon method for (a) L=10∆ and (b) L=20∆. Plus signs indicate that the 
computed divergence is greater than the analytic divergence. The analytic divergence used in (a) is the same
as that presented in Fig. 4a and the analytic divergence used in (b) is the same as that presented in Fig. 5a.

24



RM
SE

L=15∆

L=5∆ L=10∆

L=20∆

Area (km2)
10000 20000 30000 40000 50000 60000 700000

Area (km2)
10000 20000 30000 40000 50000 60000 700000

Area (km2)
10000 20000 30000 40000 50000 60000 700000

Area (km2)
10000 20000 30000 40000 50000 60000 700000

RM
SE

10

60

55

50

45

40

35

30

25

20

15

Pentagon

Triangle

1

9

8

10

7

2

3

6

5

4

RM
SE

0.6

2.2

3.4

3.0

2.6

1.8

1.4

1.0

RM
SE

0.2

1.0

0.8

0.6

0.4

1.2

1.4

1.6

1.8

2.0

(a) (b)

(c) (d)

Fig. 10. Root mean square errors of the pre-analyzed divergence estimates from the triangle (dashed curves) and 
pentagon (solid curves) methods as a function of the area of the triangle or pentagon for (a) L=5∆, (b) L=10∆, 
(c) L=15∆, (d) L=20∆.  The areas of the triangles are binned in 2000 km2 increments.  Errors of all triangles
associated with each bin are averaged to create the dashed curves.  A similar procedure is used for the pentagons, 
except the bin increment is 8000 km2.  As in Fig. 6, the curves represent averages of nine analyses.  
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