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Abstract 
 

 This study investigates two bias correction methods, lagged average and lagged 

linear regression, for individual members of ensemble forecasts.  Both methods use the 

forecast bias from previous forecasts to predict the bias of the current forecast at every 

station.  Also considered is the training period length that results in the smallest forecast 

error.   

 Ensemble forecast and verification data span 23 July through 15 September 2003.  

The data are organized into a mini-ensemble composed of 5 models and 30 days.  This 

mini-ensemble is corrected using each method of correction for training period lengths 

between 3 and 12 days.  The resulting bias, mean absolute error, RMS error, and inter-

quartile range of the corrected forecasts are then compared.   

Forecasts corrected with the lagged linear regression method are less biased but 

have more variance than those corrected with the lagged average method.  
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1.  Introduction 

Ensemble forecasts are currently used to predict atmospheric variables such as 

temperature, dewpoint, and wind speed.  They are useful because they can provide more 

information than deterministic forecasts.  An ensemble forecast is made up of several 

members, each of which are individual solutions (Manousos 2004).  Each ensemble 

member is either generated by a different numerical model of the atmosphere, has its own 

initial conditions, or has different governing physics than other members from the same 

numerical model (Hamm 2003).  The resulting ensemble is generally more accurate if 

each ensemble member is bias corrected.  Hamm (2003) determined that “bias correction 

is an important post-processing step for the NCEP SREF,” but bias correction methods 

have not been themselves examined in previous studies.  The purpose of this study is to 

investigate two methods of bias correction, the lagged average (Stensrud and Yussouf 

2003) and a lagged linear regression correction. 

The training period is defined as the number of days used for the bias correction.  

A training period that is too short may not provide enough information about the bias 

characteristics of each model, and a training period that is too long may not account for 

short-term variations or trends.  The optimal training period may depend on the numerical 

model, geographic location, season, and parameter.   

 The rest of this paper is organized as follows: ensemble forecast data is described 

in section 2; the methodology through which the bias correction methods and training 

period lengths were calculated and compared is described in section 3; results of the 

study are described in section 4; section 5 contains a discussion of implications, 

drawbacks, limitations and interesting results; and section 6 contains conclusions.   
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2.  Data  

 For this study, a combination of 5 members was selected from an overall data set 

of 31 members.  The data cover 55 days, from 23 July to 15 September 2003.   

 The entire set of 31 ensemble members comes from three sources: National 

Center for Environmental Prediction (NCEP), National Severe Storms Lab (NSSL), and 

Forecast Systems Laboratory (FSL).  The ensemble members generated by NSSL and 

FSL are experimental, and so frequently unavailable.  Twenty-one of the ensemble 

members are based on variants of the Eta model (Mesinger; Janjic et al. 1988), seven on 

the Regional Spectral Model (RSM), two on the Rapid Update Cycle (RUC) model, and 

two on the Weather Research and Forecast (WRF) model.   

The initial 31 ensemble members are not all used because many of the 

experimental members are frequently missing (Fig. 1).  To obtain a contiguous set of 

forecasts, members that miss runs for a large proportion of days are excluded; then, days 

that have a very small proportion of runs are excluded (Fig. 2).   

The winnowing process continues until there is a contiguous block of member 

runs.  The most reliable members come from the NCEP Short-Range Ensemble Forecast 

(SREF) because this is an ensemble that is almost operational.   

 Forecast data are provided on the AWIPS 212 grid, which has an 80 km grid 

spacing.  But, forecasts are verified at specific locations (observation sites).  Hence, bi-

linear interpolation is used to interpolate forecast value to specific, verifying locations.   

 Initial conditions for all the members used here use initial perturbations generated 

from the breeding method (Toth and Kalnay 1993).  The breeding method is used to 
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generate perturbations that will grow most rapidly.  In most cases, a single model can 

yield five members: a control run, two positively perturbed members and two negatively 

perturbed members. 

Twenty-two members come from the NCEP SREF.  All SREF members are 

initialized at 0600 UTC each day and use 32-km grid spacing.  Seven members are from 

the RSM, and use two different physical parameterizations between them (only one of 

which is used).  The RSM-SAS (Simple Arakawa-Shubert convection (Arakawa and 

Schubert 1974)) uses all five initial condition perturbations (RSM1, RSM2, RSM3, 

RSM4, and RSM5).  The first 5 RSM members follow the naming convention used 

throughout this data.  RSM1 uses the control initial conditions, RSM2 and RSM 3 use the 

negatively perturbed initial conditions, and RSM4 and RSM5 use positively perturbed 

initial conditions.   

Eta-KF (Kain-Fritsch convective scheme (Kain and Fritsch 1998)) and Eta-BMJ 

(Betts-Miller-Janic convective scheme) each use all 5 perturbations.  These are, 

respectively, EKF 1-5 and EBM 1-5.   

The last two members used are from the Eta model with varying initial conditions 

and physical parameterizations.  Eta-RAS-Mic (ETA4) uses an experimental Ferrier 

Microphysics with Relaxed-Arakawa Shubert convective parameterization with 

positively perturbed pair two initial conditions.  Eta-KF-CON (ETA5) uses an 

experimental Ferrier microphysics with more frequent calls to cloud water condensation 

and ice deposition and Kain-Fritsch convective parameterization, and it uses positively 

perturbed initial conditions.   
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3.  Methodology 

a. Preparing the data 

The first task in the project is ingesting the data into S-Plus (Insightful Corp. 

2004).  The data are organized according to the source model, station identifier, date, and 

variable.  The evaluated variables are 2-m temperature, 2-m dewpoint, and u and v wind 

components.  The verification data are organized similarly.   

 While individual model runs start at varying times, the goal is for all of them to 

constitute a single ensemble.  To accomplish this, data are categorized by verification 

time.  Because some ensemble members start at 1200 UTC, this is used as the time 

chosen for the start of the entire ensemble forecast each day.  The earliest forecast from 

the latest member is for 6 h, thus the first forecast from the ensemble each day verifies at 

1800 UTC that same day.  Output is available every 3 h after the initial 6 h forecast, 

through 48 h, or 1200 UTC on day 2, though only the first 24 h are evaluated here.  

However, each ensemble forecast is made up of member forecasts for various lengths of 

time.  For example, a 12 h ensemble forecast is made up of 5 members with a 12 h 

forecast starting at 1200 UTC, 13 members with an 18 h forecast starting from 0600 

UTC, and 4 members with a 24 h forecast starting from 0000 UTC the previous day.  

This introduces additional diversification into the ensemble by having members with 

initial conditions when the atmosphere was in different states.   

 Bias correction requires that each forecast be accompanied by a verification value 

or observation. Thus, missing data are problematic.  The most common cause of missing 

data in this study is missing model runs.  To facilitate processing, members and days are 

eliminated until there is a contiguous data set with no missing members.  A result of this 
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method of data reduction is that the available forecasts are not continuous in time (Fig. 

2).  Yet, even these steps do not ensure contiguous data, because observations are 

frequently missed, which results in missing verification values.   

 

b. Analysis 

 Two bias correction methods are evaluated in this study: lagged average and 

lagged linear regression.  Both bias correction methods use the bias from forecasts on 

previous days to calibrate each member individually, at each location.  To compare these 

two approaches, mean bias, mean absolute error (MAE), and root-mean-square error 

(RMSE) are used.  Bias is the difference between the corrected forecast and its 

verification, MAE uses the mean absolute value of the bias, and RMSE is the mean of 

square root of the sum of the squared bias. Forecasts from New England are used to 

evaluate the two methods so they can 1) be easily compared with Stensrud and Yussouf 

(2003), and 2) to reduce the computational burden.  

 The lagged average bias correction method has been used in the past (e.g. 

Stensrud and Yussouf 2003), and is a simple bias correction where prior biases over some 

training period are averaged, and this average is applied as a correction to the current 

forecast (Fig. 4a).   

 In contrast, the lagged linear regression method uses is a least-squares line to 

model the trend in the bias of the forecasts over the training period at each location.  Both 

methods are tested for training periods between 3 and 12 days (Fig. 4b).   

For lagged linear regression, at least two data points are necessary or a line cannot 

be calculated.  Yet, with only two data points, least squares has no meaning.  As a result, 
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the training period must be at least 3 days (preferably longer).  Missing data are ignored 

such that a missing day reduces the effective length of the training period.  In no case 

does the training period contain less than three days.  For a given training period, 

locations are excluded for which the number of days is less than there are for a given 

training period.  The number of locations with sufficient data for the lagged linear 

regression method increases with longer training periods (Fig. 3).  

    

 

4.  Results 

 To compare the bias correction methods, mean biases, MAEs, and RMSEs from 

all locations are plotted as a function of training period length and also of forecast time 

for each variable.  Each plot shows the mean and inter-quartile range (IQR) of the error 

statistic for each method.  The bias distributions from each correction method are also 

compared. Analysis of the bias distributions for all forecasts at a specific training period 

length for one variable at time 12 (verifying at 0000 UTC) shows differences between 

bias distributions of forecasts corrected with lagged average and lagged linear regression 

(Fig 5).  Biases from the lagged average method are more narrowly distributed than those 

from the lagged linear regression method for smaller training period lengths.  But, for 

longer training period lengths, these bias distributions look similar.  This is the case for 

all variables.   

Plots of mean and IQR of these distributions allow comparison of distribution 

characteristics (Fig. 6). For smaller training periods (about 3 to 7 days), forecasts 

corrected with lagged linear regression have mean biases smaller than those corrected 
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with lagged average, but larger IQR.  In many cases, this IQR is larger than that for 

uncorrected forecasts.  Forecasts corrected with the lagged average method usually have 

a smaller mean bias and smaller IQR than the uncorrected forecast bias distributions.  

With longer training periods, the IQR of for the lagged linear regression decreases, while 

increasing for the lagged average method.  Both methods yield similar IQR for the 

longest (10 to 12 days).   

 For most variables, MAE is lower for forecasts corrected with the lagged average 

method than those with the lagged linear regression method (not shown).  Lagged 

average MAE increases with training period length, while lagged linear regression MAE 

decreases with training period length.  RMS errors show similar trends (not shown). 

 While these bias error distributions for long training periods look similar for both 

methods, a Komolgorov-Smirnov goodness-of-fit test is used to investigate further. Bias 

distributions from the 12 h forecast, valid at 0000 UTC on day 1, for all variables are 

investigated. Between the two methods, al distributions are distinct at p = 0.05. Within 

each method, only the v-wind biases corrected with the lagged average method for 

training period lengths of 5 and 6, and also for training periods 10 through 12, are 

indistinguishable at p = 0.05.   

 Plots of error statistics as a function of forecast time (Fig. 7) show forecast bias 

and IQR increase with forecast time for both methods, as do the uncorrected forecast 

biases. This indicates that overall skill decreases for longer forecasts.  The only variable 

that does not display this general increase over the first 24 h is v wind component.   

 Overall biases for the v component behave differently form the others over the 

experimental period.  Unlike the other variables, the resulting bias of v component 
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forecasts using the lagged average method shows a persistent negative bias, and is often 

worse than no correction at all. In contrast, the lagged linear regression method does a 

good job at removing systematic bias (Fig. 8a).  A time series of uncorrected biases 

reveals that over the experimental period (23 July to 9 September, in this case), 

uncorrected forecast biases drift from positive to negative (Fig. 8b).  This trend is 

corrected by the lagged linear regression method, but the lagged average method 

frequently predicts that the bias will be more positive than observed and so introduces a 

systematic error in the ensemble.  Thus, in this case the lagged linear regression is clearly 

more desirable than the lagged average.    

 

5.  Discussion and Conclusions 

 This study is small in scale in that it only studies an ensemble of 5 

members over 73 stations in New England, and for less than two months of the warm 

season.  An investigation on a larger scale could produce more general results.  In 

general, forecasts corrected with the lagged linear regression method are less biased but 

have more variability than those corrected with the lagged average method.  Differences 

in bias hold for all training period lengths, but differences in variability decrease as 

training period increases.  

 Effects of variables other than training period on the bias correction methods 

should be studied as well.  Some variables that may affect the bias corrections are 

geographic location and season.  Also, training periods longer than 12 days may be 

useful.   
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 To know which of these methods yields the best ensemble performance requires a 

careful application of rank histograms (Hamill 2001).  Time constraints prevented this 

next, obvious step. 

 Though this investigation does not yield conclusive results about which of the two 

methods is better, there is enough evidence to allow reasonable speculation.  Hamm 

(2003) found that bias corrections can reduce the under-dispersiveness of ensembles.  

The lagged linear regression has potential to do this, because it often increases the 

variability (IQR) of members.  The main purpose of bias correction is to remove bias 

from the ensemble as a whole.  Since lagged linear regression does a good job of 

removing bias from members on average, it will probably help remove it from ensembles 

as well.   

The effect of lagged average and lagged linear regression bias corrections on 

ensemble performance is not evaluated here.  As stated earlier, evaluating ensemble 

performance requires, as a start, analysis of rank histograms (Hamill 2001).   
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Captions 

Fig. 1. Model runs available at all times.  Gaps in data necessitated winnowing of data 

set.   

Fig. 2. Days of data used in study (2003).   

Fig. 3. Locations with enough data to use the lagged linear regression correction method.  

Bottom axis is training period length.   

Fig. 4a. Schematic of lagged average bias correction method for training period length of 

10.  Triangle is predicted bias for the current forecast, and the actual bias is just 

above it.   

Fig. 4b. Schematic of lagged linear regression bias correction method for training period 

of 10 days.  Plus-sign is predicted bias for the current forecast from the lagged 

linear regression correction method.  Actual bias is just below it.   

Fig. 5.  Left column is lagged average method; right column is lagged linear regression.  

Top histograms are training period length 3, bottom are 12.  Vertical line is 0.  

Plots for forecast time 12 (verifies 0000 UTC).  5a. is corrected temperature 

forecast bias, b. is dewpoint, c. is u-wind, and d. is v-wind.    

Fig. 6. Forecast bias as a function of training period length. 

Fig. 7.  Forecast bias as a function of time.   

Fig. 8a.  v-wind forecast bias as a function of time.  Notice that the lagged average 

method produces forecasts with a consistently negative bias.   

Fig. 8b.  v-wind EKF2 forecast biases at SFM (Sanford, Maine).  Notice that they 

decrease on average throughout the time the forecasts were studied.    
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