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Abstract 

 Boundary layer stratocumulus clouds play an important role in the Earth’s radiative 

budget and climate.  This paper uses reflectivity data from the Millimeter-Wave Cloud Radar 

(MMCR) at the Southern Great Plains (SGP) Atmospheric Radiation Measurement Climate 

Research Facility (ACRF) to explore variability of continental boundary layer stratocumulus.  

Neglecting subgrid variability in numerical models can lead to biases in radiative heating and 

microphysical process rates.   Analysis of over 70 hours of radar data demonstrates that cloud 

system variability increases with mean reflectivity, indicating that drizzling clouds are more 

variable than nondrizzling clouds.  Variability is highly vertically dependent, suggesting that 

numerical model accuracy may improve if this vertical dependency is included in subgrid cloud 

parameterizations. 

 
1.  Introduction 

 
The important role of marine stratocumulus clouds in climate and numerical weather 

prediction is well recognized.  It is frequently shown that an increase in stratocumulus cloud 

cover of only a few percent would compensate for greenhouse warming due to CO2 doubling, 

while a similar decrease would double the warming (e.g., Randall et al. 1984; Ramanathan et al. 

1989).  Clearly, even a relatively small bias in stratocumulus representation in mesoscale or 

global circulation models may result in serious errors in the simulated regional weather and 

global climate predictions.  

 Continental stratocumulus are no less important, however, they have been studied less 

frequently.  This study focuses on one particular aspect of continental stratocumulus 

characterization, namely a description of their variability in both the horizontal and vertical 

directions.  Numerous studies have shown that neglecting variability at scales smaller than model 
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grid (subgrid variability) can lead to substantial biases in radiative quantities (e.g., Cahalan et al. 

1994), as well as microphysical process rates (e.g., Kogan 1998; Rotstayn 2000; Pincus and 

Klein 2000; Larson et al. 2001a; Wood et al. 2002).   

Variability is typically characterized by probability distribution functions (PDFs).  The 

most straightforward way to define a PDF is to assume that it can be represented by a known 

analytical function.  For example, a two-parameter Gaussian function with the first parameter 

(mean value of the parameter) predicted by the model and the second parameter (standard 

deviation) defined by some parameterization or closure (e.g., Larson et al. 2001b; Price 2001; 

Larson et al. 2002; Price and Wood 2002; Kogan et al. 2005).   

Studies suggest that standard deviation depends strongly on cloud type, presence of 

precipitation, and the model grid size (e.g., Kogan et al. 2005).  It is, however, unknown if 

variability (standard deviation) has a significant vertical dependence.  If the latter can be 

neglected, then a universal PDF with a constant standard deviation could be employed to 

characterize variability in the whole cloud layer, and the formulation of subgrid variability in 

numerical models would be simplified.  The vertical dependence of variability will be the focus 

of this study.   

Cloud variability was evaluated based on radar reflectivity data collected by the 

Atmospheric Radiation Measurement program (ARM) (Stokes and Schwartz 1994).  Since 

September of 1996, the Southern Great Plains (SGP) ARM Climate Research Facility (ACRF) 

has operated a Millimeter-Wave Cloud Radar (MMCR) capable of detecting small cloud droplets 

(Moran et al. 1998).  Determination of cloud base and height were made using a combination of 

the SGP ACRF’s lidar and ceiliometer (Clothiaux et al. 2000), as radar data were not reliable for 

this purpose, especially when virga or insects were present.  These data were compiled in the 
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Active Remote Sensing of Clouds (ARSCL) Value Added Product (VAP) discussed in section 

2a. 

The layout of this paper is as follows.  Section 2 describes the data source, 

instrumentation, and general dataset information.  Section 3 covers the methodology used in 

analysis of the data.  Section 4 outlines the results of the study and continues with a discussion of 

these results.  A summary and conclusions follow in section 5.   

 
2.  Data 

a.  ARSCL Value Added Product 

The Active Remote Sensing of Clouds (ARSCL) Value Added Product (VAP) contained 

MMCR reflectivity data and estimated cloud boundaries (Clothiaux et al. 2000).  Data streams 

used during data assimilation and segmentation were cloudBaseBestEstimate, 

cloudTopBestEstimate, and reflectivity data as a function of height.  The cloudBaseBestEstimate 

was determined by the method of Clothiaux et al. (2000) and used the laser ceiliometer and the 

Micro Pulse Lidar (MPL) for clouds below 3km.  It should be noted that this dataset contained 

clouds with tops less than 1500 m.  Cases were identified by analyzing data from Professor Jay 

Mace’s ARM Archive 

(http://www.met.utah.edu/mace/homepages/research/archive/sgp/sgp.html).  Data from the 

MMCR merged moments imagery were used for the initial query.  Section 3a covers the 

segmentation of cases in detail. 

 
b.  Instrumentation 

 The primary source of data for this study is the MMCR. This radar points vertically and 

operates at 35 Ghz with an 8.77 mm wavelength (Ka band).  This short wavelength enables it to 



5 

discriminate small cloud droplets and other nonhydrometeor objects.  This instrument has an 

operational range of 10-30 km; however, ARM data uses a ceiling of 14 km.  Beyond that range, 

or in moderate precipitation, the radar beam is attenuated.  With its short wavelength and no need 

for scanning strategies, the effective beamwidth for this radar is 0.2˚-0.3˚.  This beamwidth gives 

the radar a range resolution of 35-50 m, which is significantly higher than the WSR-88D radar, 

~1000 m (Moran et al. 1998).  The ARSCL VAP uses a vertical gate spacing of 45 m.  While the 

MMCR is a Doppler radar, only the reflectivity data are used in this study. 

The ARSCL VAP incorporates measurements from two laser instruments, the MPL and 

Belfort Laser Ceiliometer or Vaisala Ceiliometer (BLC or VCEIL), to detect cloud boundaries 

with higher accuracy than the MMCR alone.  The BLC uses a 910 nm laser with a range of 7.3 

km and vertical resolution of 7.6 m (Flynn 2004a).  The VCEIL replaced the BLC in the summer 

of 2000.  The VCEIL uses a 905 nm laser with a range of 7.5 km and a vertical resolution of 15 

m (Flynn 2004b).  The MPL uses a 523.5 nm laser that has a maximum vertical range of 18 km 

depending on the cloud thickness.  The MPL has a vertical resolution of 30 m and these 

measurements are averaged every 30 seconds (Flynn 2005). 

  
c.  Dataset 

This study analyzed 70.4 hours of boundary layer stratocumulus observations over the 

SGP ACRF during the 1998 to 2003 period.  This relatively small dataset was obtained by 

applying a very strict data quality control and narrowly focused selection criteria with respect to 

cloud type and mesoscale variability.  This process is described in more detail in the following 

methodology section.  The analyzed stratocumulus clouds were typically associated with frontal 

passages during the winter months, from November through early March.  Data for each day 

were further segmented to approximately 0.5-1.5 hours or 18-54 km, assuming cloud motion of 
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10 m s-1.  The distribution of data segment lengths is shown in Figure 1.  About 40% of the 

segments have durations in the 0.5-1 hour range, while 57% are in the 1-1.5 hour range. 

 New near-field corrections were required for MMCR data below 1000 m, as the old 

corrections were found to contain errors.  These corrections were especially important below 500 

m AGL, where many of the subcloud and base observations were located.  At the time of this 

study, the archived data had not been reprocessed to reflect these corrections.  Therefore, these 

corrections were applied during the data processing stage of this study. 

 
3.  Methodology 

a.  Segmenting 

 Most of the boundary layer segments over the SGP ACRF during the analyzed winter 

seasons occurred under a strong inversion located at about 900 mb.  The boundary layer clouds 

were often overlaid by cumuliform clouds and/or a cirrus deck.  A preliminary dataset was 

compiled using the low-level merged moments imagery.  The multiple layer cloud systems were 

included in the analysis, as long as no precipitation shafts interfered with the stratocumulus 

clouds.  

The first step in applying a quality control scheme was to reduce contamination in the 

dataset due to insects and other nonhydrometeor targets.  These targets are often referred to as 

“atmospheric plankton” by Lhermitte (1966).  The problem is especially difficult in the spring 

and summer seasons and less severe during the analyzed winter season.  Discrimination between 

contaminated and clean data was achieved through examination of the top and base height 

estimates along with radiometer data.  If the radar showed high reflectivity and the direct beam 

solar irradiance measurement showed values associated with clear skies, then the case was 

deemed to be contaminated, and removed from the dataset.  As well, if the estimated cloud 
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boundaries were missing or seriously in error (e.g. cloud base higher than cloud top), the case 

was removed.  Profiles with maximum reflectivity below -50 dBZ were also rejected from 

analysis. 

After the initial segments were compiled, the data were sent through a custom data 

extraction program.  Variability of the radar data were examined at four levels: subcloud, base, 

middle, and top.  The subcloud layer was defined to be 3 range gates, or 135 m, below the base 

layer.  The base layer was defined as the average of all ARSCL VAP base heights in the 

segment.  The top layer was defined as the lowest top height identified by the ARSCL VAP, 

while the middle layer was the average between the top and base heights.  The program then 

extracted and printed a file containing the reflectivity values over the time domain at each of the 

four levels.  Next, a mean reflectivity was calculated for each of the four layers per segment, 

along with the standard deviation of each layer.  A separate file was created for the entire dataset, 

consisting of the mean layer variability data for the four layers. 

After preliminary segmentation of the dataset had taken place, a second pass of the data 

was completed.  The second pass analyzed each case based on their top and bottom heights.  As 

this study looked at radar reflectivity, the segments were then subdivided into 0.5-1.5 hour 

segments keeping the top height nearly constant to minimize mesoscale variability.  Segments 

were further subdivided if the base height varied more than 20%.  The program also removed 

data where mean layer reflectivity was < -50 dBZ; if the resulting segments did not contain 

enough data, they were removed from the dataset.  Segments found still containing mesoscale 

variability were also removed from the dataset.  These revised segments were then passed 

through the program again to re-compute the heights at the four levels, their mean reflectivity 

values, and standard deviations. 
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b.  Statistical Definitions 

The dataset comprised 66 segments and 70.4 hours of clean data.  Figure 1 shows the 

distribution of the data, where most of the data is centered around a 1 hour segment length.  The 

first step calculated the reflectivity mean and standard deviation at each of the four levels.  

Horizontal standard deviation will hereafter be referred to as the Cloud Variability Parameter 

(CVP).  The reflectivity at a given time or horizontal position is denoted as Z
i
 and the mean 

reflectivity at one level will be represented as: Z = (Z
i

i=1

n

! ) / n .  The CVP at one level is ! , and 

will be defined as: 

! = (Z
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To differentiate !  between layers, the notation ! j will be used, where j = {1,2,3,4} .  The 

subcloud CVP will be denoted as !
1
 and !

4
will refer to the cloud top CVP.  For analysis of the 

CVP vertical dependence, we introduce the Vertical Variability Parameter (VVP).  The VVP is 

denoted by the letter !  and defined as the standard deviation of the four CVP values as: 
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In (2) !  denoted the mean value of the CVP over all four levels:  

! = (!
j
) / m
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m

"       (3) 
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4.  Results and Discussion 

a.  Cloud Variability Parameter 

In the plots shown below, the CVP is plotted versus the mean subcloud reflectivity; the 

latter is closely related with the amount of drizzle below a cloud.  As Fig. 2 shows, standard 

deviation in general increases with subcloud reflectivity.  As larger values of subcloud 

reflectivity may indicate the presence of drizzle, it may be inferred that drizzling clouds exhibit 

larger reflectivity.  The distinction between drizzling and nondrizzling clouds was made by 

applying a threshold reflectivity value identified in a number of previous studies.  Sauvageot and 

Omar (1987), Wang and Geerts (2003) suggested a threshold value between -20 and -15 dB.  

Mace and Sassen (2000) found that continental clouds at the SGP ACRF with reflectivities > -20 

dBZ had a high probability of drizzling.  Kogan et al. (2005), also in the study of boundary layer 

clouds over the SGP ACRF, provided arguments for a reflectivity threshold of -17dBZ as a good 

estimation of a drizzling state.  By using the -17 dBZ threshold, it was found that the mean CVP 

for cloud segments with mean subcloud reflectivity (Zsc) less than -17 dBZ was about 1.8 dBZ, 

while cloud segments with Zsc > -17 dBZ had a mean CVP of 2.5 dBZ.  It can also be inferred 

that the nondrizzling clouds tend to be more homogenous than their drizzling counterparts, as the 

CVP of the four layers were much closer, whereas the drizzling clouds had drastically different 

CVP values.  This is clearly shown in the vertical range of data for drizzling and nondrizzling 

clouds in Fig. 2.  Nondrizzling clouds have a smaller range, showing similar variability in all 

layers.  The drizzling clouds show the opposite behavior, with larger ranges in the CVP between 

layers.  Figure 2 also shows that most of the nondrizzling segments were clustered around -38 to 

-28 dBZ, while drizzling segments clustered around -15 to -3 dBZ. 
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Figure 3 shows the four layer CVP values against the mean subcloud reflectivity, Zsc.  

Data for each layer are shown in separate plots, easing analysis of each layer’s variability.  

Added to Figure 3 are third order polynomial curve fits for each layer, allowing trends to be 

more easily seen.  All layers displayed a similar trend of increasing variability following the 

increase in mean subcloud reflectivity.  The top layer showed a pronounced region of higher 

variability, along with a much faster increase as compared to other layers.  A notable feature in 

the layers below cloud top is the presence of a local maximum around -15 dBZ.  Given the rather 

small size of this dataset, it was difficult to conclude whether this feature represented real 

smoothing of cloud fields as precipitation increases, or just an artifact of insufficient data at the 

right end of the analyzed data range. 

 The curve fits shown in Figure 4 confirmed that the top layer had significantly higher 

variability than the other layers.  The CVP in the top layer increased from 2.5-3.0 dBZ for 

nondrizzling cloud segments, to 3.5-4.0 dBZ for drizzling cloud segments.  In the other three 

layers, CVP varied from 1.2-1.8 dBZ for nondrizzling cloud segments, to 1.8-2.8 dBZ in 

drizzling segments.  The interesting merge and then steady decline in CVP between the subcloud 

and base layers might suggest the existence of a local maximum near -15 dBZ may not be an 

anomaly of curve fitting or an artifact of small sampling, but rather related to the drizzle process.  

Figure 5 is similar to Fig. 2 in displaying the CVP versus the mean reflectivity; however, Fig. 5 

shows the CVP versus the reflectivity at each level.  This enables one to see that reflectivity at 

the top of the cloud only reaches the -17 dBZ threshold for 7 out of the 66 segments.  Most of the 

top layer values correspond to small cloud drops and, hence, have relatively small reflectivity.  

Larger values of reflectivity in the subcloud and base data indicated the presence of larger cloud 

drops in this region. 
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b.  Vertical Variability Parameter 

 Thus far, it has been shown that the top layer is significantly more variable than the lower 

layers of these clouds through analysis of the CVP.  The difference in variability at different 

levels can be more clearly illustrated using the vertical variability parameter (VVP), ! .  Figure 6 

shows !  along with bars representing ! , or the standard deviation of ! .   The !  parameter 

conveniently illustrates the spread among the four CVP values.  The trend in the !  data is 

similar to the one previously found in the horizontal data where the variability increased with an 

increase in reflectivity.  The larger the bars in this figure, the more variable the cloud is in the 

vertical.  For example, the cloud segments in the -38 to -28 dBZ range tended to have much 

smaller vertical variability when compared with drizzling segments.  The nondrizzling cloud 

segments were much more homogeneous in the vertical; thus, there is a much stronger vertical 

dependence for drizzling clouds than for nondrizzling clouds. 

 Another way to visualize these changes is to look at the number of segments containing a 

minimum or maximum in variability at a given layer.  Figure 7 shows that the highest number of 

maximum standard deviations is in the top layer.  This coincides nicely with all the previous data 

suggesting that the top of the cloud is the most variable, especially when the minimum standard 

deviation occurrences are by far the lowest of the four layers.  These data also suggest that the 

middle layer can be considered nearly homogeneous, as it varies the least of any layer.  The 

subcloud layer was the most variable of the lower layers.  It is interesting to note that the 

minimum and maximum standard deviations are nearly the same in the subcloud layer.    
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5.  Summary and Conclusions 

 Data were collected from the SGP ACRF from 1998 to 2003 consisting of clean 

boundary layer stratocumulus segments.  The dataset comprises 66 segments of lengths ranging 

from 0.5-1.5 hours, resulting in 70.4 hours of analyzed data.  These data were analyzed for 

horizontal variability using the cloud variability parameter (CVP) defined as mean segment 

standard deviation.  Vertical variability was analyzed using the vertical variability parameter 

(VVP), defined as the standard deviation of the four CVP values.  Overwhelmingly, the results 

showed a strong vertical dependence in these clouds.  Of the four layers analyzed, the top layer 

displayed the highest variability.  This ranged from 2.4-4.0 dBZ, rising steadily as reflectivity 

was increased in the subcloud layer, following a change from nondrizzling to a drizzling state.  

The subcloud layer had the second highest variability, ranging from 1.8 dBZ to a local maximum 

of 2.7 dBZ at the drizzle threshold of -17 dBZ.  This variability then fell steadily to 1.6 dBZ as 

reflectivity increased.  The base and middle layers of the cloud showed similar trends to that of 

the subcloud layer.  Nondrizzling segments had the smallest vertical variability; the vertical 

variability of drizzling segments was approximately 200% of nondrizzling segments.  We 

conclude that mesoscale and global circulation models stand to benefit greatly from the use of 

vertically dependent subgrid cloud parameterizations for both drizzling and nondrizzling 

stratocumulus clouds. 
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8.  Figure Captions 

Figure 1.  Histogram showing distribution of data as a function of segment length in hours.  
Number of segments are shown versus their length in hours. 

 
Figure 2.  Standard deviation of mean segment reflectivity (dBZ) plotted against the mean 

subcloud reflectivity (dBZ) at four levels: subcloud, base, middle, and top. 
 
Figure 3.  As in Figure 2, except in separate layer plots with polynomial curve fits.  Levels 

follow: (a) subcloud, (b) base, (c) middle, and (d) top. 
 
Figure 4.  As in Figure 2, except data are plotted as polynomial curves without raw data. 
 
Figure 5.  Standard deviation of mean segment reflectivity (dBZ) plotted against the mean 

reflectivity at each level (dBZ).  The four levels are: subcloud, base, middle, and top. 
 
Figure 6.  Sigma-bar, as defined in section 3a, Eq. 3 (dBZ), plotted against the mean subcloud 

reflectivity (dBZ).  Bars show delta as defined in section 3a, Eq. 2. 
 
Figure 7.  Histogram showing the number of min/max standard deviation occurrences at each of 

the four levels:  subcloud, base, middle, and top. 
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Figure 1.  Histogram showing distribution of data as a function of segment length in hours.  
Number of segments are shown versus their length in hours. 



18 

 

 

Figure 2.  Standard deviation of mean segment reflectivity (dBZ) plotted against the mean 
subcloud reflectivity (dBZ) at four levels: subcloud, base, middle, and top. 
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Figure 3.  As in Figure 2, except in separate layer plots with polynomial curve fits.  Levels 
follow: (a) subcloud, (b) base, (c) middle, and (d) top. 
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Figure 4.  As in Figure 2, except data are plotted as polynomial curves without raw data. 
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Figure 5. Standard deviation of mean segment reflectivity (dBZ) plotted against the mean 
reflectivity at each level (dBZ).  The four levels are: subcloud, base, middle, and top. 
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Figure 6.  Sigma-bar, as defined in section 3a, Eq. 3 (dBZ), plotted against the mean subcloud 
reflectivity (dBZ).  Bars show delta as defined in section 3a, Eq. 2. 
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Figure 7.  Histogram showing the number of min/max standard deviation occurrences at each of 
the four levels:  subcloud, base, middle, and top. 


