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ABSTRACT

Bias correction and consensus have been applied to MOS temperature forecasts in effort
to increase accuracy. Temperature forecasts obtained for KOKC and KPIT from 1 May
2002 to 30 January 2005 were classified according to maximum and minimum, projection,
initialization, and season to examine model behavior between these divisions. All forecasts
were verified using RMSE.

Compared to the uncorrected individual model forecasts, a seasonal bias correction
showed a dlight increase in RMSE values. A lagged bias correction decreased RMSE by
approximately 0.1°F to 0.5°F compared to the RMSE for the uncorrected forecasts. An
equally weighted consensus decreased RM SE by about 0.5°F to 1.0°F and 0.1°F to 0.5°F for
maximum and minimum temperatures, respectively, over the uncorrected individual model
forecasts. This method improved upon the lagged bias correction of individual model
forecasts by several tenths of a degree. A linear regression consensus performed dlightly
worse than the equally weighted consensus. An unequally weighted consensus method
based on lagged variance was the most accurate of all forecast enhancement methods,
decreasing RMSE values by approximately 0.5°F to 1.5°F compared to uncorrected
individual model forecasts and by severa tenths of a degree over the lagged bias corrected
individual model forecasts. Thus, based on the methods examined in this study, it is shown
that a model consensus using alagged correction based on past performance will provide the
most significant M OS temperature forecast improvement.

1. Introduction

Consensus forecasts of Model Output Statistics (MOS) products have consistently
demonstrated increased skill over their individual forecast counterparts (e.g., Vislocky and
Fritsch 1995; Brooks and Doswell 1996). In these instances, the addition of different forecasts
provided more information to the consensus, thereby decreasing the influence of individual
discrepancies (Vislocky and Fritsch 1995). The incorporation of bias correction has also been
shown to improve consensus performance (Woodcock and Engel 2005). Therefore, this study
aims to determine the best methods for correcting bias and weighting consensus temperature

forecasts.



Two main methods are used to create consensus forecasts. An equally weighted consensus
averages individual forecasts together, whereas an unequally weighted consensus assigns varying
weights to individual forecasts based on measures of error. Vislocky and Fritsch (1995) found
that an unegually weighted consensus shows an insignificant improvement over an averaged
consensus. However, Baars and Mass (2004), using a more refined methodol ogy for
constructing an unequally weighted consensus, examined model performance by geographic
distribution, time/season, and climatological departure. The latter approach resulted in a more
substantial forecast improvement. Woodcock and Engel (2005) showed that consensus forecasts
can gain additional accuracy from applying a running bias correction to individual forecasts
before assimilation (2005).

The hypothesis of the present paper follows the results of more recent studies (Etherton 2004,
Baars and Mass 2004; Woodcock and Engel 2005) that indicate a small but valuable increasein
performance for unequally weighted consensus temperature forecasts. The adoption of arunning
bias correction is aso expected to benefit individual models. The models examined in this study
include Nested Grid Model (NGM), Global Forecast System (GFS), and North American
Mesoscale (NAM) (formerly known as the EtaModel). More information on observational and
model datais covered in section 2. Methods of forecast verification and consensus construction
are explained in section 3. Results are provided in section 4 and further analyzed in section 5.

2. Data

Two datasets were used for this study. The first was an archive of MOS forecasts from the
NGM, GFS, and NAM models. The length of each archive varied depending on the model, but
approximately spanned from 2001 to 2005. The second was an archive of hourly surface

weather observations that spanned from 1982 to 2005. For the purpose of this project, MOS data



was used that was present for all models (1 May 2002 — 30 January 2005) and the corresponding
surface observations to those dates. Temperature forecasts were then extracted from the model
datasets. Maximum and minimum temperature forecasts were acquired for Day 1 and Day 2
projections from 0000 and 1200 UTC model initializations.

To verify model forecasts, 6-hourly maximum and minimum temperatures were used as
reported at the site. Daily maximum and minimum temperatures were determined by checking
for the highest value at 1800, 0000, and 0600 UTC and the lowest value at 1200 and 1800 UTC,
respectively. Although daily maximum and minimum temperatures can occur at other times,
these are the times for which the MOS equations were constructed. If missing observations or
model forecasts occurred, all data from the associated maximum or minimum time period were
disregarded. In effort to decrease the influence of outliersin the dataset, standard deviation of
model errors was used to establish a 95% confidence interval for model errors. The distribution
of error was checked to ensure that the errors followed a normal distribution, making this process
reasonable (an exampleis shown in Fig. 1). If any forecast was deemed an outlier, all forecasts
and observations for that time were considered outliers and removed from later use.

This study focused on model performance at Oklahoma City, OK (KOKC) and Pittsburgh, PA
(KPIT). Theformer was chosen simply due to proximity to the author. The latter was selected
as abasis of comparison to a site considered meteorologically different than the initial location.
3. Methodology

Forecast verification determines the accuracy of forecasts. This process employs measures
that can be applied to compare forecasts and discern forecast characteristics. The present study

used mean error (ME, also known as “bias’), mean square error (M SE), and root mean square



error (RMSE) for this purpose. No one of these measures can sufficiently represent all aspects of
forecast accuracy. Therefore, it was important to use different measures with different strengths.

RM SE was the measure of choice for forecast verification purposes. This measure provided
the best compromise between MAE and MSE. Because RM SE sguares values during the
summation, consistency is rewarded more than MAE (Brooks and Doswell 1996). Since the
sgquare root is applied to the average summation, values are less sensitive to forecasts errors and
therefore less exaggerated than M SE.

This study is concerned with improving the MOS forecasts of individual models and then
examining ways to create consensus forecasts. For individual forecasts, the RM SE was
ultimately compared between the forecasts with no bias correction, the forecasts with a seasonal
bias correction, and the forecasts with a running lagged bias correction. For consensus forecasts,
an equal weighting was applied to each of the three forecast models on adaily basis, aswell as
an unequal weighting of the three forecast models, by using linear regression and alagged
weighting scheme described by Etherton (2004), which is discussed in more detail below.

For each of the procedures mentioned above, each combination of season (warm — April to
September; cool — October to March), model initialization time (0000 UTC, 1200 UTC) and
temperature forecast (Day 1 maximum and minimum; Day 2 maximum and minimum) was
treated separately. Cross-validation was utilized to test procedures on multiple independent data
sets. In this process, the data was separated into 3 distinct sets. Then, two of these sets were
combined for the purpose of training data while the remaining set served as the validation data.

This created three independent data sets; the results of which were then averaged.



a. Individual forecasts with no bias correction

In this process, the RM SE was cal cul ated for each forecast model over the entire period for
each combination of season, initialization time and temperature forecast. Determining the
RM SE for these uncorrected individual forecasts was important for providing a basis of
comparison for the bias-corrected individual forecasts and the consensus forecasts.
b. Individual forecasts with seasonal bias correction

To establish a seasonal bias correction for individual model forecasts, the ME (i.e., bias) was
calculated over the entire season for each combination of model, initialization time and
temperature forecast in the two-year training data set. Next, using the validation data set, each
calculated seasonal ME was then subtracted from the respective forecast. The RM SE was then
calculated for these seasonally bias-corrected forecasts.
c. Individual forecasts with lagged bias correction

A running lagged bias correction was also applied to individual model forecasts. For agiven
forecast date, this method cal culates the ME for previous forecasts over a predetermined length
of time (i.e, lag period). The bias over this lagged period is then subtracted from the given
forecast. Thislagged bias correction was performed for each forecast in the training data set. In
order to determine the optimal lagged period for each combination of model, season,
initialization time and temperature forecast, the performance of lag periods was spanning from 1
to 30 days was examined. As before, the RM SE was calculated for the bias-corrected forecasts.
d. Consensus forecasts with equal weighting

To establish a baseline of comparison for more sophisticated consensus forecast techniques,
consensus forecasts in which each individual model was equally weighted were first examined.

Therefore, the NGM, GFS, and NAM forecasts were simply averaged together. In aprocess



similar to that of the individual forecasts with no correction, the RM SE was simply calculated for
forecasts over the entire period.
e. Consensus forecasts using linear regression

It was assumed that a consensus forecast using equal weighting of each forecast model would
not create the optimal consensus forecast. Therefore, consideration was made for the means by
which each individual model could be utilized, but allow for unequal weighting of these models
toward the resulting consensus forecast. One method considered for this purpose was multiple
linear regression. In this procedure, apredictand, Y, isfit by alinear combination of a set of
predictors, X;, was then applied in the following manner:

Y~ By +BX + B X, +..+ B, X

in which “~" represents a numerically modeled fit using a set of coefficients, [§ (fori =1, ..., p).
In this study, our predictand is the observed temperature while the predictors are the temperature
forecasts by each model. The value of each coefficient (in addition to an equation intercept, %)
is computed so as to minimize the squared sum of the residuals. Residuals are the errors, or
differences, that naturally arise between the modeled values of the predictand and its true, or
observed, values.

The regression equations were derived from the training set and then tested upon the
validation set. The RMSE was calculated for the forecasts over the entire period.
f. Consensus forecasts using a lagged weighting scheme

Minimum variance error was also used to weight individual model forecasts, using a
technique described by Etherton (2004). This method employs the following series of equations
to assign optimal weights, designated by “w”. Thevariables“a,” “b,” and “c,” represent each

model and “c*” represents MSE.



Wa = (6%/6%)/( 6%6°c+6%50°c+6%66%c)

Wh = (6°/0°)/( 6%0°c+6,26°c+6,0%c)

We = (6%4/6%0)/( 6%06°c+6%a0°c+06%40%c)
These equations produce weights ranging from O to 1, with the value of the weight increasing
inversely to MSE. Therefore, the more accurate the model is, the higher the weight it receives.
This gives greater influence to models that perform best and still alows the addition of beneficial
information from weaker models. To create the consensus forecast, we then combine the
weights and forecasts in the following manner:

forecast consensus = Wa* forecast, + wy* forecasty, + we* forecast.

The MSE used in these equations is obtained from alag period. In amethod similar to that
applied to the individual forecasts with arunning lagged bias correction, an examination was
made for the performance of lag periods spanning from 1 to 30 days in order to determine the
optimal lagged period for each combination of season, initialization time and temperature
forecast. The RMSE was then calculated for these consensus forecasts.

4. Results

The key to making fair comparisons between the different individual model methods and
consensus methods is using the same measure of forecast performance (e.g., RMSE) and
classifications for verification. Asdiscussed previously, we treated each combination of season
(warm — April to September; cool — October to March), model initialization time (0000 UTC,
1200 UTC) and temperature forecast (Day 1 maximum and minimum; Day 2 maximum and
minimum) separately. Thus, one can ascertain individual strengths and weaknesses of each
model in the various procedures. For example, one model may have the smallest RM SE for
warm season, 0000 UTC forecasts of day 1 maximum temperature but may have the greatest

RM SE for warm season, 0000 UTC forecasts of day 2 maximum temperature.



a. Individual forecasts with no bias correction

1) KOKC

The dominant model for KOKC was GFS, outperforming the others forecasts for all
classifications except for NGM Day 1 maximum temperature. GFS RM SE ranged from 2.91°F
to 5.49°F. Minimum temperatures were typically more accurate than maximum temperatures for
thismodel. NGM RM SE ranged from 3.2°F to 7.1°F and NAM ranged from 3.29°F to 6.39°F.
NGM typically performed better for maximum temperatures and NAM for minimum
temperatures (Table 1).

2) KPIT

NAM gained more accuracy for KPIT warm season temperatures at 0000 and 1200
UTC. However, GFS maintained dominance for the other classifications. All models showed
narrower RM SE ranges for KPIT of 3.04°F to 5.18°F, 2.78°F to 4.57°F, and 2.75°F to 4.96°F for
NGM, GFS, and NAM, respectively. NAM tended to provide more accurate forecasts than
NGM, especialy for the warm season (Table 1).
b. Individual forecasts with seasonal bias correction

1) KOKC

The GFS model showed better performance for most KOK C forecasts, excluding NGM
maximum temperature forecasts for the warm season 0000 UTC initialization. RMSE values
ranged from 3.3°F to 7.66°F, 2.96°F to 6.03°F, and 3.58°F to 6.6°F for NGM, GFS, and NAM,
respectively. No distinct favor appears to exist between NGM and NAM for classifications

(Table 2).



2) KPIT

For this station, the GFS was more accurate for every classification. RMSE ranges for al
models were again smaller, with minimum and maximum values of approximately 3°F and 5°F,
respectively. Asindicated by the unbiased results for KPIT, the NAM model outperformed the
GFS by afew tenths of a degree in most situations (Table 2).
c. Individual forecasts with lagged bias correction

1) KOKC

The GFS model showed |lower RM SE values for a majority of KOKC forecasts but NAM
produced lower RM SE values for certain warm season classifications. The RM SE range for
GFS was smaller than other models at 2.88°F to 5.41°F. A pattern is also evident such that 0000
UTC forecasts were more accurate in the warm season and 12000 UTC were more accurate in
the cool season (Table 3).

The previous forecasts assessment was made using the best forecasts for each classification.
The lag period from which the best forecasts were derived, varied between most classifications.
However as lag periods approached 30 days, their accuracy typically increased as indicated by
the parabolic-shaped frequency curve on Fig. 2.

2) KPIT

The GFS provided the best maximum temperature forecast in all situations for KPIT.
However, NAM dominated for the Day 2 minimum temperature. The ranges for all models were
smaller and more consistent than those of KOKC. Minimum RMSE vaues for al models
occurred for the Day 1 maximum temperature. Minimum RM SE values al occurred for the Day
2 maximum temperature. 0000 UTC forecasts were most accurate in the warm season and 1200

UTC forecasts were most accurate in the cool season (Table 3).



The plot of optimal lag periods for KPIT resembled the plot for KOKC. However, KPIT
frequency was typically greater for lagged periods of lessthan 30 days. This suggests that the
optimal lag period for KOKC was around 30 days and 25-30 days for KPIT (Fig. 2).

d. Consensus forecasts with equal weighting

1) KOKC

For an equally weighted consensus forecast for KOK C, the most accurate forecast occurred
for Day 1 maximum temperature and the least accurate forecast occurred for Day 2 maximum
temperatures with respective RM SE values of 2.64°F and 5.39°F. 0000 UTC forecasts provided
the most accurate maximum temperature forecast, while 1200 UTC forecasts provided the most
accurate minimum temperature forecast (Table 4).

2) KPIT

RMSE valuesfor KPIT tended to be afew tenths of a degree lower than those for KOKC.
Similarly, forecast accuracy for KPIT behaved in the same manner between classifications as for
KOKC (Table 4).
e. Consensus forecasts using linear regression

1) KOKC

The lowest RMSE for KOKC was 3.02°F for Day 1 minimum temperature. The highest
RM SE was 5.84°F for Day 2 maximum temperature. 0000 UTC forecasts were always more
accurate for maximum temperatures and 1200 UTC forecasts were the most accurate for
minimum temperatures. Warm season forecasts were more accurate than cool season forecasts
for al classifications by about a 1°F to 2°F (Table 5).

2) KPIT



KPIT forecasts were overall more accurate by KOKC forecasts by afew tenths of a degree.
Forecast characteristics were similar to KOKC for model initialization and season (Table 5).
f. Consensus forecasts using a lagged weighting scheme

1) KOKC

RMSE vaues for KOKC ranged from 2.49°F to 5.09°F. The former value occurred for Day
1 maximum temperature and the latter for Day 2 maximum temperature. 0000 UTC forecasts
provided the lowest RM SE values for maximum temperatures. 1200 UTC forecasts were most
accurate for minimum temperatures (Table 6).

The best forecasts for this station occurred most often for the 30 day period. Days4 to 13
also provided the best forecasts for certain classifications. However, the frequency was low
enough for these periods that they were regarded as insignificant (Fig. 3).

2) KPIT

KPIT showed less forecast accuracy consistency between classifications compared to KOKC.
The RM SE range was significantly lower with values ranging from 2.43°F to 3.41°F. Overall,
KPIT forecasts were more accurate, especially for 1200 UTC cool season forecasts (Table 6).

The optimal lag periods for KPIT appear to precede KOKC by afew days. This placesthe
best KPIT forecastsin the range of 28 to 30 and KOKC at 30 days. This slight change for
optimal 1ag periods suggests that different lag periods are needed to obtain the best forecasts for
different locations.

5. Discussion
a. Individual model forecasts
Since an independent assessment of MOS forecast enhancement methods has been

established, the next step isto compare these methods to determine which ones provide the



greatest improvement. After obtaining and verifying individual MOS forecasts, a seasonal bias
correction was applied. Unexpectedly, RM SE values of seasonally biased forecasts were
typically higher than unbiased forecasts by a few tenths of adegree. This decrease in accuracy
for the seasonal bias correction did not differ greatly between classifications. Thisincreasein
RM SE suggests that while the models do have forecast errors, the bias is not consistently warm
or cold long periods of time. It is suspected that this seasonal bias correction may be over
sampling the data, resulting in an inability to ascertain any further predictive information.

A lagged bias method was also applied to individual model forecasts. In this, the bias was
calculated over alagged period of time and then applied to the current forecast. The best lagged
bias forecasts did not did differ significantly between classifications, which is consistent with the
results of the uncorrected and seasonally biased corrected forecasts. The increase in accuracy for
lagged bias forecasts over unbiased forecasts was similar to that of the uncorrected forecasts over
seasonally biased corrected forecasts; typically, afew tenths of adegree. Therefore, we deduce
that by sampling the model performance over shorter periods of time prior to the forecast, we can
obtain valuable predictive information. The fact that the optimal lagged period was
approximately 30 days for both locations furthers support our reasoning for the shortcomings of
the seasonal bias correction.

Overall, the results of these tests on the individual model forecasts are encouraging. We
have shown that the MOS temperature forecasts produced for all models do result in errors but
that there are ways in which to reduce that error over long periods of time. In fact, by examining
the bias over short periods of time prior to the actual forecast, we can reduce the RMSE over an
extended period of time.

b. Consensus forecasts



In addition to improving the individual model forecasts, we were also interested in developing
consensus forecasts and comparing them to the individual model forecasts. In doing so, we
examined both equal weighting of the individual forecasts as well as two methods of unequal
weighting.

As expected, the equally weighted consensus of the NGM, GFS, and NAM models was
typically more accurate than any individual model. The extent of improvement over the
uncorrected individual models was more pronounced for maximum temperatures for both
stations. Overall, the equal weighted model consensus decreased RM SE by about 0.5°F to 1.0°F
for maximum temperatures and about 0.1°F to 0.5°F for minimum temperatures when compared
to the best individual model results. This simple consensus also showed a general improvement
over individual models with lagged bias correction by a few tenths of adegree. It isimportant to
note that while the weighting of the individual model forecasts may be sub-optimal; this simple
consensus outperformed the individual model methods tested.

One method of creating unequal weighting of the modelsisto use multiple linear regression
to minimize the variance of the forecasts. Surprisingly, the linear regression with unequal
weighting performed worse than the equal weighting. Moreover, the performance of the linear
regression models was no better than that of the best uncorrected individual models. The reason
for this has not been determined yet, though it is suspected to be related to the over sampling that
weakened the seasonal bias correction of the individual model forecasts.

Another method of determining unequal weights of the individual modelsisto simultaneously
calculate the weights based on lagged variance of errors, as described by Etherton (2004). This
consensus method consistently showed improvement over the equally weighted consensus of a

few tenths of a degreefor all classifications. When compared to the best individual uncorrected



forecasts, this method showed a significant improvement; about 0.5°F to 1.5°F. It isinteresting
to note that in using this method, the RM SE values decreased for maximum temperature
forecasts sightly more than for minimum temperature forecasts.

With all of these resultsin mind, we have answered our two original questions. Individual
MOS temperature forecasts can be improved ssmply by considering past performance of
approximately 30 days. Moreover, consensus forecasts that utilize past performance to calculate
individual model weighting perform better in the long run than individual model forecasts.
However, it isimportant to note that not all consensus forecasts will necessarily improve upon
the individual model forecasts.

c. Future considerations

While we have shown that processes exist to improve the performance of MOS temperature
forecasts, thereis still plenty of room for further enhancement of the ideas discussed above.
Perhaps the linear regression consensus would perform much better if more predictors were used
than simply the individual temperature forecasts. Now knowing the value of the lagged model
performance, past bias could be used to improve this model. Another possibility isto combine
the methods described above. For example, the forecasts using the Etherton (2004) could be
refined further through a second bias correction procedure. Lag periods beyond 30 days could
also examined to determine if these longer periods, shorter than a season, can produce more
accurate forecasts. The methods used in this study could also be used to assess extreme
climatological departures or various meteorological situations. For verifying forecast methods, a
distributions-oriented approach may also be useful for amore in-depth look at forecast

characteristics.



Aside from improving the forecasts themselves, another important step would be to examine
the performance of these methods at additional locations. Due to the time constraints of this
project, only two stations (KOKC and KPIT) were examined. They were chosen due to the
author’ s familiarity as well as them being meteorologically diverse. However, it would be
beneficial to test other meteorologically different sites as well aslocations that are

meteorologically smilar.
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Station
Season

KOKC
Warm
Cool
Warm
Cool

KPIT
Warm
Cool
Warm
Cool

Day 1 Max

NGM GFS NAM

Run
(UTC)
0 3.20
0 3.88
12 3.81
12 5.10
0 3.15
0 353
12 357
12 4.13
TABLE 1.

3.25
3.72
3.67
4.57

2.78
3.24
3.10
354

3.74
4.36
4.75
525

275
3.70
3.24
4.61

Day 1 Min
NGM  GFS
360 291
444 388
335 283
443 365
304 284
428 368
279 263
402 351

NAM

3.29
4.13
3.23
4.09

2.82
3.74
272
3.65

Day 2 Max

NGM GFS NAM

4.15
5.87
4.43
7.10

3.83
4.68
4.30
518

3.98
4.96
4.22
5.49

3.42
401
3.63
4.57

4.78
5.87
4.63
6.39

3.37
4.78
3.83
4.96

Day 2 Min

NGM GFS NAM

3.83
5.80
3.72
5.42

4.03
5.47
3.27
4.60

Average RM SE (°F) results for individual model forecasts with no correction.

Bold valuesindicate the most accurate models (i.e., the smallest RM SE)

3.13
4.85
314
4.32

3.40
4.29
3.16
394

341
513
3.40
443

3.61
4.88
3.10
397



Station
Season

KOKC
Warm
Cool
Warm
Cool

KPIT
Warm
Cool
Warm
Cool

Run
(UTC)

12
12

0
0
12
12

Day 1 Max
NGM GFS
330 337
429 399
406 3.79
567 495
323 29
368 337
381 333
417 383

NAM

3.85
4.49
4.67
5.45

3.02
3.56
3.50
4.41

Day 1 Min
NGM  GFS
359 296
471 416
339 286
454 384
319 290
433 370
291 269
405 353

NAM

3.58
4.38
3.44
4.29

297
3.80
2.80
371

Day 2 Max
NGM GFS
427 431
646 552
460 447
746 603
401 366
476 417
444 391
530 472

NAM

4.77
6.18
4.75
6.60

3.90
4.76
4.15
481

Day 2 Min
NGM  GFS
378 321
6.09 512
368 319
563 467
412 348
565 4.28
349 320
469 398

TABLE 2. Average RMSE (°F) results for individual models forecasts with seasonal bias correction.

Bold values indicate the most accurate models (i.e., the smallest RM SE)

NAM

3.69
5.46
3.68
4.76

3.83
5.05
3.24
4.01



Station Run

Season (UTC) Day 1 Max Day 1 Min Day 2 Max Day 2 Min
NGM GFS NAM NGM GFS NAM NGM GFS NAM NGM GFS NAM
KOKC
Warm 0 315 290 280 338 288 294 402 360 341 375 314 333
Cool 0 395 356 385 474 410 4.09 6.01 456 484 590 506 510
Warm 12 376 314 226 313 279 285 428 373 395 355 312 320
Cool 12 510 432 450 457 383 403 737 541 579 563 451 455
KPIT
Warm 0 284 252 259 289 283 272 328 293 322 372 336 352
Cool 0 347 320 343 430 376 370 475 395 448 543 421 494
Warm 12 321 271 289 266 260 259 370 316 348 314 313 301
Cool 12 410 354 416 397 356 364 519 439 455 466 395 4.03

TABLE 3. Average RMSE (°F) results for individual model forecasts with lagged bias correction.
Bold values indicate the most accurate models (i.e., the smallest RM SE)



Station  Run
Season (UTC) DaylMax DaylMin Day2Max Day2Min

KOKC

Warm 0 2.64 291 3.34 3.10
Cool 0 3.25 3.76 4.37 4.75
Warm 12 3.20 2.74 3.67 2.99
Cool 12 412 3.66 5.36 4.19
KPIT

Warm 0 2.53 2.57 3.00 3.36
Cool 0 281 3.58 3.72 4.42
Warm 12 2.78 2.48 3.44 2.87
Cool 12 3.29 3.45 4.10 3.74

TABLE 4. Average RMSE (°F) results for consensus forecasts using equally-weighted models.
Bold values indicate the most accurate models (i.e., the smallest RM SE)



Station Run
Season (UTC) DaylMax DaylMin Day2Max Day2Min

KOKC

Warm 0 3.02 3.00 3.82 3.20
Cool 0 3.82 4.03 5.46 4.86

Warm 12 3.55 2.85 4.10 3.16
Cool 12 4.89 3.79 5.84 4.47
KPIT

Warm 0 281 277 3.55 3.45
Cool 0 297 355 3.89 4.33

Warm 12 3.16 257 3.87 3.03
Cool 12 351 3.48 412 381

TABLE 5. Average RMSE (°F) results for consensus forecasts using linear regression.
Bold values indicate the most accurate models (i.e., the smallest RM SE)



Station Run Day 1 Day 2

Season (UTC) Day1Max Min Max Day 2 Min

KOKC

Warm 0 2.49 2.78 3.18 2.96
Cool 0 3.15 371 4.25 4.72
Warm 12 2.87 2.63 3.46 2.87
Cool 12 3.98 361 5.09 4.15
KPIT

Warm 0 243 2.50 2.75 3.15
Cool 0 274 355 3.62 4.30
Warm 12 2.65 2.40 3.12 2.79
Cool 12 3.24 341 2.89 3.74

TABLE 6. Average RMSE (°F) results for consensus forecasts using the Etherton (2004) method.
Bold values indicate the most accurate models (i.e., the smallest RM SE)



Frequency

ONGM Max
ENGM Min
OGFS Max
OGFSMin
B ETA Max
OETA Min

8to0 12 13t0 17 18t0 22

-18t0-22  -13to-17 -8to-12 -3to-7 -2t02 3to7
5°FBins

FIG. 1. Mean error distributions using 5°F bins for warm season KPIT model forecasts.
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FIG. 2. Frequency of KOKC and KPIT optimal lagged periods for individual model forecasts.
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FIG. 3. Frequency of KOKC and KPIT optimal lagged period consensus forecasts,

using the Etherton (2004) method.



