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ABSTRACT 
 

     Bias correction and consensus have been applied to MOS temperature forecasts in effort 
to increase accuracy.  Temperature forecasts obtained for KOKC and KPIT from 1 May 
2002 to 30 January 2005 were classified according to maximum and minimum, projection, 
initialization, and season to examine model behavior between these divisions.  All forecasts 
were verified using RMSE.   
     Compared to the uncorrected individual model forecasts, a seasonal bias correction 
showed a slight increase in RMSE values.  A lagged bias correction decreased RMSE by 
approximately 0.1°F to 0.5°F compared to the RMSE for the uncorrected forecasts. An 
equally weighted consensus decreased RMSE by about 0.5°F to 1.0°F and 0.1°F to 0.5°F for 
maximum and minimum temperatures, respectively, over the uncorrected individual model 
forecasts.  This method improved upon the lagged bias correction of individual model 
forecasts by several tenths of a degree.  A linear regression consensus performed slightly 
worse than the equally weighted consensus.  An unequally weighted consensus method 
based on lagged variance was the most accurate of all forecast enhancement methods, 
decreasing RMSE values by approximately 0.5°F to 1.5°F compared to uncorrected 
individual model forecasts and by several tenths of a degree over the lagged bias corrected 
individual model forecasts.  Thus, based on the methods examined in this study, it is shown 
that a model consensus using a lagged correction based on past performance will provide the 
most significant MOS temperature forecast improvement. 

 
 
 
1.  Introduction 
 
     Consensus forecasts of Model Output Statistics (MOS) products have consistently 

demonstrated increased skill over their individual forecast counterparts (e.g., Vislocky and 

Fritsch 1995; Brooks and Doswell 1996).  In these instances, the addition of different forecasts 

provided more information to the consensus, thereby decreasing the influence of individual 

discrepancies (Vislocky and Fritsch 1995).  The incorporation of bias correction has also been 

shown to improve consensus performance (Woodcock and Engel 2005).  Therefore, this study 

aims to determine the best methods for correcting bias and weighting consensus temperature 

forecasts. 



 

 

     Two main methods are used to create consensus forecasts.  An equally weighted consensus 

averages individual forecasts together, whereas an unequally weighted consensus assigns varying 

weights to individual forecasts based on measures of error.  Vislocky and Fritsch (1995) found 

that an unequally weighted consensus shows an insignificant improvement over an averaged 

consensus.  However, Baars and Mass (2004), using a more refined methodology for 

constructing an unequally weighted consensus, examined model performance by geographic 

distribution, time/season, and climatological departure.  The latter approach resulted in a more 

substantial forecast improvement.  Woodcock and Engel (2005) showed that consensus forecasts 

can gain additional accuracy from applying a running bias correction to individual forecasts 

before assimilation (2005).  

     The hypothesis of the present paper follows the results of more recent studies (Etherton 2004; 

Baars and Mass 2004; Woodcock and Engel 2005) that indicate a small but valuable increase in 

performance for unequally weighted consensus temperature forecasts.  The adoption of a running 

bias correction is also expected to benefit individual models.  The models examined in this study 

include Nested Grid Model (NGM), Global Forecast System (GFS), and North American 

Mesoscale (NAM) (formerly known as the Eta Model).  More information on observational and 

model data is covered in section 2.  Methods of forecast verification and consensus construction 

are explained in section 3.  Results are provided in section 4 and further analyzed in section 5. 

2.  Data 

     Two datasets were used for this study.  The first was an archive of MOS forecasts from the 

NGM, GFS, and NAM models.  The length of each archive varied depending on the model, but 

approximately spanned from 2001 to 2005.  The second was an archive of hourly surface 

weather observations that spanned from 1982 to 2005.  For the purpose of this project, MOS data 



 

 

was used that was present for all models (1 May 2002 – 30 January 2005) and the corresponding 

surface observations to those dates.  Temperature forecasts were then extracted from the model 

datasets.  Maximum and minimum temperature forecasts were acquired for Day 1 and Day 2 

projections from 0000 and 1200 UTC model initializations.   

     To verify model forecasts, 6-hourly maximum and minimum temperatures were used as 

reported at the site.  Daily maximum and minimum temperatures were determined by checking 

for the highest value at 1800, 0000, and 0600 UTC and the lowest value at 1200 and 1800 UTC, 

respectively.  Although daily maximum and minimum temperatures can occur at other times, 

these are the times for which the MOS equations were constructed.  If missing observations or 

model forecasts occurred, all data from the associated maximum or minimum time period were 

disregarded.  In effort to decrease the influence of outliers in the dataset, standard deviation of 

model errors was used to establish a 95% confidence interval for model errors.  The distribution 

of error was checked to ensure that the errors followed a normal distribution, making this process 

reasonable (an example is shown in Fig. 1).  If any forecast was deemed an outlier, all forecasts 

and observations for that time were considered outliers and removed from later use.  

     This study focused on model performance at Oklahoma City, OK (KOKC) and Pittsburgh, PA 

(KPIT).  The former was chosen simply due to proximity to the author.  The latter was selected 

as a basis of comparison to a site considered meteorologically different than the initial location.  

3.  Methodology 

     Forecast verification determines the accuracy of forecasts.  This process employs measures 

that can be applied to compare forecasts and discern forecast characteristics.  The present study 

used mean error (ME, also known as “bias”), mean square error (MSE), and root mean square 



 

 

error (RMSE) for this purpose.  No one of these measures can sufficiently represent all aspects of 

forecast accuracy.  Therefore, it was important to use different measures with different strengths.    

     RMSE was the measure of choice for forecast verification purposes.  This measure provided 

the best compromise between MAE and MSE.  Because RMSE squares values during the 

summation, consistency is rewarded more than MAE (Brooks and Doswell 1996).  Since the 

square root is applied to the average summation, values are less sensitive to forecasts errors and 

therefore less exaggerated than MSE.   

     This study is concerned with improving the MOS forecasts of individual models and then 

examining ways to create consensus forecasts.  For individual forecasts, the RMSE was 

ultimately compared between the forecasts with no bias correction, the forecasts with a seasonal 

bias correction, and the forecasts with a running lagged bias correction.  For consensus forecasts, 

an equal weighting was applied to each of the three forecast models on a daily basis, as well as 

an unequal weighting of the three forecast models, by using linear regression and a lagged 

weighting scheme described by Etherton (2004), which is discussed in more detail below. 

For each of the procedures mentioned above, each combination of season (warm – April to 

September; cool – October to March), model initialization time (0000 UTC, 1200 UTC) and 

temperature forecast (Day 1 maximum and minimum; Day 2 maximum and minimum) was 

treated separately.  Cross-validation was utilized to test procedures on multiple independent data 

sets.  In this process, the data was separated into 3 distinct sets.  Then, two of these sets were 

combined for the purpose of training data while the remaining set served as the validation data.  

This created three independent data sets; the results of which were then averaged. 

 

 



 

 

a. Individual forecasts with no bias correction 

     In this process, the RMSE was calculated for each forecast model over the entire period for 

each combination of season, initialization time and temperature forecast.  Determining the 

RMSE for these uncorrected individual forecasts was important for providing a basis of 

comparison for the bias-corrected individual forecasts and the consensus forecasts. 

b. Individual forecasts with seasonal bias correction 

     To establish a seasonal bias correction for individual model forecasts, the ME (i.e., bias) was 

calculated over the entire season for each combination of model, initialization time and 

temperature forecast in the two-year training data set.  Next, using the validation data set, each 

calculated seasonal ME was then subtracted from the respective forecast.  The RMSE was then 

calculated for these seasonally bias-corrected forecasts. 

c. Individual forecasts with lagged bias correction 

     A running lagged bias correction was also applied to individual model forecasts.  For a given 

forecast date, this method calculates the ME for previous forecasts over a predetermined length 

of time (i.e., lag period).  The bias over this lagged period is then subtracted from the given 

forecast. This lagged bias correction was performed for each forecast in the training data set.  In 

order to determine the optimal lagged period for each combination of model, season, 

initialization time and temperature forecast, the performance of lag periods was spanning from 1 

to 30 days was examined.  As before, the RMSE was calculated for the bias-corrected forecasts. 

d. Consensus forecasts with equal weighting 

     To establish a baseline of comparison for more sophisticated consensus forecast techniques, 

consensus forecasts in which each individual model was equally weighted were first examined.  

Therefore, the NGM, GFS, and NAM forecasts were simply averaged together.  In a process 



 

 

similar to that of the individual forecasts with no correction, the RMSE was simply calculated for 

forecasts over the entire period. 

e. Consensus forecasts using linear regression 

It was assumed that a consensus forecast using equal weighting of each forecast model would 

not create the optimal consensus forecast.  Therefore, consideration was made for the means by 

which each individual model could be utilized, but allow for unequal weighting of these models 

toward the resulting consensus forecast.  One method considered for this purpose was multiple 

linear regression.  In this procedure, a predictand, Y, is fit by a linear combination of a set of 

predictors, Xi, was then applied in the following manner: 

pp XXXY ββββ ++++ ...~ 22110  

in which “~” represents a numerically modeled fit using a set of coefficients, ßi (for i = 1, …, p).  

In this study, our predictand is the observed temperature while the predictors are the temperature 

forecasts by each model.  The value of each coefficient (in addition to an equation intercept, ß0) 

is computed so as to minimize the squared sum of the residuals.  Residuals are the errors, or 

differences, that naturally arise between the modeled values of the predictand and its true, or 

observed, values. 

The regression equations were derived from the training set and then tested upon the 

validation set.  The RMSE was calculated for the forecasts over the entire period. 

f. Consensus forecasts using a lagged weighting scheme 

     Minimum variance error was also used to weight individual model forecasts, using a 

technique described by Etherton (2004).  This method employs the following series of equations 

to assign optimal weights, designated by “w”.  The variables “a,” “b,” and “c,” represent each 

model and “σ2” represents MSE.   
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These equations produce weights ranging from 0 to 1, with the value of the weight increasing 

inversely to MSE.  Therefore, the more accurate the model is, the higher the weight it receives.  

This gives greater influence to models that perform best and still allows the addition of beneficial 

information from weaker models.  To create the consensus forecast, we then combine the 

weights and forecasts in the following manner: 

forecastconsensus = wa*forecasta + wb*forecastb + wc*forecastc 

     The MSE used in these equations is obtained from a lag period.  In a method similar to that 

applied to the individual forecasts with a running lagged bias correction, an examination was 

made for the performance of lag periods spanning from 1 to 30 days in order to determine the 

optimal lagged period for each combination of season, initialization time and temperature 

forecast.  The RMSE was then calculated for these consensus forecasts. 

4.  Results 

The key to making fair comparisons between the different individual model methods and 

consensus methods is using the same measure of forecast performance (e.g., RMSE) and 

classifications for verification.  As discussed previously, we treated each combination of season 

(warm – April to September; cool – October to March), model initialization time (0000 UTC, 

1200 UTC) and temperature forecast (Day 1 maximum and minimum; Day 2 maximum and 

minimum) separately.  Thus, one can ascertain individual strengths and weaknesses of each 

model in the various procedures.  For example, one model may have the smallest RMSE for 

warm season, 0000 UTC forecasts of day 1 maximum temperature but may have the greatest 

RMSE for warm season, 0000 UTC forecasts of day 2 maximum temperature. 



 

 

a. Individual forecasts with no bias correction 

1)  KOKC 

The dominant model for KOKC was GFS, outperforming the others forecasts for all 

classifications except for NGM Day 1 maximum temperature.  GFS RMSE ranged from 2.91°F 

to 5.49°F.  Minimum temperatures were typically more accurate than maximum temperatures for 

this model.  NGM RMSE ranged from 3.2°F to 7.1°F and NAM ranged from 3.29°F to 6.39°F.  

NGM typically performed better for maximum temperatures and NAM for minimum 

temperatures (Table 1).  

2) KPIT 

NAM gained more accuracy for KPIT warm season temperatures at 0000 and 1200 

UTC.  However, GFS maintained dominance for the other classifications.  All models showed 

narrower RMSE ranges for KPIT of 3.04°F to 5.18°F, 2.78°F to 4.57°F, and 2.75°F to 4.96°F for 

NGM, GFS, and NAM, respectively.  NAM tended to provide more accurate forecasts than 

NGM, especially for the warm season (Table 1).  

b. Individual forecasts with seasonal bias correction 

1)  KOKC 

The GFS model showed better performance for most KOKC forecasts, excluding NGM 

maximum temperature forecasts for the warm season 0000 UTC initialization.  RMSE values 

ranged from 3.3°F to 7.66°F, 2.96°F to 6.03°F, and 3.58°F to 6.6°F for NGM, GFS, and NAM, 

respectively.  No distinct favor appears to exist between NGM and NAM for classifications 

(Table 2).  

 

 



 

 

2)  KPIT 

For this station, the GFS was more accurate for every classification.  RMSE ranges for all 

models were again smaller, with minimum and maximum values of approximately 3°F and 5°F, 

respectively.  As indicated by the unbiased results for KPIT, the NAM model outperformed the 

GFS by a few tenths of a degree in most situations (Table 2). 

c. Individual forecasts with lagged bias correction 

1)  KOKC 

The GFS model showed lower RMSE values for a majority of KOKC forecasts but NAM 

produced lower RMSE values for certain warm season classifications.  The RMSE range for 

GFS was smaller than other models at 2.88°F to 5.41°F.  A pattern is also evident such that 0000 

UTC forecasts were more accurate in the warm season and 12000 UTC were more accurate in 

the cool season (Table 3).   

     The previous forecasts assessment was made using the best forecasts for each classification.  

The lag period from which the best forecasts were derived, varied between most classifications.  

However as lag periods approached 30 days, their accuracy typically increased as indicated by 

the parabolic-shaped frequency curve on Fig. 2.   

2) KPIT 

The GFS provided the best maximum temperature forecast in all situations for KPIT.  

However, NAM dominated for the Day 2 minimum temperature.  The ranges for all models were 

smaller and more consistent than those of KOKC.  Minimum RMSE values for all models 

occurred for the Day 1 maximum temperature.  Minimum RMSE values all occurred for the Day 

2 maximum temperature.  0000 UTC forecasts were most accurate in the warm season and 1200 

UTC forecasts were most accurate in the cool season (Table 3).  



 

 

     The plot of optimal lag periods for KPIT resembled the plot for KOKC.  However, KPIT 

frequency was typically greater for lagged periods of less than 30 days.  This suggests that the 

optimal lag period for KOKC was around 30 days and 25-30 days for KPIT (Fig. 2).  

d. Consensus forecasts with equal weighting 

1)  KOKC 

For an equally weighted consensus forecast for KOKC, the most accurate forecast occurred 

for Day 1 maximum temperature and the least accurate forecast occurred for Day 2 maximum 

temperatures with respective RMSE values of 2.64°F and 5.39°F.  0000 UTC forecasts provided 

the most accurate maximum temperature forecast, while 1200 UTC forecasts provided the most 

accurate minimum temperature forecast (Table 4). 

2)  KPIT 

RMSE values for KPIT tended to be a few tenths of a degree lower than those for KOKC.  

Similarly, forecast accuracy for KPIT behaved in the same manner between classifications as for 

KOKC (Table 4).  

e. Consensus forecasts using linear regression 

1)  KOKC 

The lowest RMSE for KOKC was 3.02°F for Day 1 minimum temperature.  The highest 

RMSE was 5.84°F for Day 2 maximum temperature.  0000 UTC forecasts were always more 

accurate for maximum temperatures and 1200 UTC forecasts were the most accurate for 

minimum temperatures.  Warm season forecasts were more accurate than cool season forecasts 

for all classifications by about a 1°F to 2°F (Table 5).    

2)  KPIT 



 

 

KPIT forecasts were overall more accurate by KOKC forecasts by a few tenths of a degree.  

Forecast characteristics were similar to KOKC for model initialization and season (Table 5).  

f. Consensus forecasts using a lagged weighting scheme 

1)  KOKC 

RMSE values for KOKC ranged from 2.49°F to 5.09°F.  The former value occurred for Day 

1 maximum temperature and the latter for Day 2 maximum temperature.  0000 UTC forecasts 

provided the lowest RMSE values for maximum temperatures.  1200 UTC forecasts were most 

accurate for minimum temperatures (Table 6).   

     The best forecasts for this station occurred most often for the 30 day period.  Days 4 to 13 

also provided the best forecasts for certain classifications.  However, the frequency was low 

enough for these periods that they were regarded as insignificant (Fig. 3). 

2) KPIT 

KPIT showed less forecast accuracy consistency between classifications compared to KOKC.  

The RMSE range was significantly lower with values ranging from 2.43°F to 3.41°F.  Overall, 

KPIT forecasts were more accurate, especially for 1200 UTC cool season forecasts (Table 6).  

     The optimal lag periods for KPIT appear to precede KOKC by a few days.  This places the 

best KPIT forecasts in the range of 28 to 30 and KOKC at 30 days.  This slight change for 

optimal lag periods suggests that different lag periods are needed to obtain the best forecasts for 

different locations.  

5.  Discussion 

a. Individual model forecasts 

     Since an independent assessment of MOS forecast enhancement methods has been 

established, the next step is to compare these methods to determine which ones provide the 



 

 

greatest improvement.  After obtaining and verifying individual MOS forecasts, a seasonal bias 

correction was applied.  Unexpectedly, RMSE values of seasonally biased forecasts were 

typically higher than unbiased forecasts by a few tenths of a degree.  This decrease in accuracy 

for the seasonal bias correction did not differ greatly between classifications.  This increase in 

RMSE suggests that while the models do have forecast errors, the bias is not consistently warm 

or cold long periods of time.  It is suspected that this seasonal bias correction may be over 

sampling the data, resulting in an inability to ascertain any further predictive information. 

     A lagged bias method was also applied to individual model forecasts.  In this, the bias was 

calculated over a lagged period of time and then applied to the current forecast.  The best lagged 

bias forecasts did not did differ significantly between classifications, which is consistent with the 

results of the uncorrected and seasonally biased corrected forecasts.  The increase in accuracy for 

lagged bias forecasts over unbiased forecasts was similar to that of the uncorrected forecasts over 

seasonally biased corrected forecasts; typically, a few tenths of a degree.  Therefore, we deduce 

that by sampling the model performance over shorter periods of time prior to the forecast, we can 

obtain valuable predictive information.  The fact that the optimal lagged period was 

approximately 30 days for both locations furthers support our reasoning for the shortcomings of 

the seasonal bias correction. 

Overall, the results of these tests on the individual model forecasts are encouraging.  We 

have shown that the MOS temperature forecasts produced for all models do result in errors but 

that there are ways in which to reduce that error over long periods of time.  In fact, by examining 

the bias over short periods of time prior to the actual forecast, we can reduce the RMSE over an 

extended period of time. 

b. Consensus forecasts 



 

 

     In addition to improving the individual model forecasts, we were also interested in developing 

consensus forecasts and comparing them to the individual model forecasts.  In doing so, we 

examined both equal weighting of the individual forecasts as well as two methods of unequal 

weighting.   

As expected, the equally weighted consensus of the NGM, GFS, and NAM models was 

typically more accurate than any individual model.  The extent of improvement over the 

uncorrected individual models was more pronounced for maximum temperatures for both 

stations.  Overall, the equal weighted model consensus decreased RMSE by about 0.5°F to 1.0°F 

for maximum temperatures and about 0.1°F to 0.5°F for minimum temperatures when compared 

to the best individual model results.  This simple consensus also showed a general improvement 

over individual models with lagged bias correction by a few tenths of a degree.  It is important to 

note that while the weighting of the individual model forecasts may be sub-optimal; this simple 

consensus outperformed the individual model methods tested. 

     One method of creating unequal weighting of the models is to use multiple linear regression 

to minimize the variance of the forecasts.  Surprisingly, the linear regression with unequal 

weighting performed worse than the equal weighting.  Moreover, the performance of the linear 

regression models was no better than that of the best uncorrected individual models.  The reason 

for this has not been determined yet, though it is suspected to be related to the over sampling that 

weakened the seasonal bias correction of the individual model forecasts.       

     Another method of determining unequal weights of the individual models is to simultaneously 

calculate the weights based on lagged variance of errors, as described by Etherton (2004).  This 

consensus method consistently showed improvement over the equally weighted consensus of a 

few tenths of a degree for all classifications.  When compared to the best individual uncorrected 



 

 

forecasts, this method showed a significant improvement; about 0.5°F to 1.5°F.  It is interesting 

to note that in using this method, the RMSE values decreased for maximum temperature 

forecasts slightly more than for minimum temperature forecasts.   

With all of these results in mind, we have answered our two original questions.  Individual 

MOS temperature forecasts can be improved simply by considering past performance of 

approximately 30 days.  Moreover, consensus forecasts that utilize past performance to calculate 

individual model weighting perform better in the long run than individual model forecasts.  

However, it is important to note that not all consensus forecasts will necessarily improve upon 

the individual model forecasts. 

c. Future considerations  

     While we have shown that processes exist to improve the performance of MOS temperature 

forecasts, there is still plenty of room for further enhancement of the ideas discussed above.  

Perhaps the linear regression consensus would perform much better if more predictors were used 

than simply the individual temperature forecasts.  Now knowing the value of the lagged model 

performance, past bias could be used to improve this model.  Another possibility is to combine 

the methods described above.  For example, the forecasts using the Etherton (2004) could be 

refined further through a second bias correction procedure.  Lag periods beyond 30 days could 

also examined to determine if these longer periods, shorter than a season, can produce more 

accurate forecasts. The methods used in this study could also be used to assess extreme 

climatological departures or various meteorological situations.  For verifying forecast methods, a 

distributions-oriented approach may also be useful for a more in-depth look at forecast 

characteristics.   



 

 

Aside from improving the forecasts themselves, another important step would be to examine 

the performance of these methods at additional locations.  Due to the time constraints of this 

project, only two stations (KOKC and KPIT) were examined.  They were chosen due to the 

author’s familiarity as well as them being meteorologically diverse.  However, it would be 

beneficial to test other meteorologically different sites as well as locations that are 

meteorologically similar. 
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Station 
Season 

Run 
(UTC)         Day 1 Max          Day 1 Min          Day 2 Max           Day 2 Min 

  NGM GFS NAM  NGM GFS NAM  NGM GFS NAM  NGM GFS NAM 

KOKC                 

Warm 0 3.20 3.25 3.74  3.60 2.91 3.29  4.15 3.98 4.78  3.83 3.13 3.41 

Cool 0 3.88 3.72 4.36  4.44 3.88 4.13  5.87 4.96 5.87  5.80 4.85 5.13 

Warm 12 3.81 3.67 4.75  3.35 2.83 3.23  4.43 4.22 4.63  3.72 3.14 3.40 

Cool 12 5.10 4.57 5.25  4.43 3.65 4.09  7.10 5.49 6.39  5.42 4.32 4.43 

                 

KPIT                 

Warm 0 3.15 2.78 2.75  3.04 2.84 2.82  3.83 3.42 3.37  4.03 3.40 3.61 

Cool 0 3.53 3.24 3.70  4.28 3.68 3.74  4.68 4.01 4.78  5.47 4.29 4.88 

Warm 12 3.57 3.10 3.24  2.79 2.63 2.72  4.30 3.63 3.83  3.27 3.16 3.10 

Cool 12 4.13 3.54 4.61  4.02 3.51 3.65  5.18 4.57 4.96  4.60 3.94 3.97 
 

TABLE 1.  Average RMSE (°F) results for individual model forecasts with no correction. 
                                        Bold values indicate the most accurate models (i.e., the smallest RMSE) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

Station 
Season 

Run 
(UTC)        Day 1 Max        Day 1 Min         Day 2 Max          Day 2 Min 

  NGM GFS NAM  NGM GFS NAM  NGM GFS NAM  NGM GFS NAM 

KOKC                 

Warm 0 3.30 3.37 3.85  3.59 2.96 3.58  4.27 4.31 4.77  3.78 3.21 3.69 

Cool 0 4.29 3.99 4.49  4.71 4.16 4.38  6.46 5.52 6.18  6.09 5.12 5.46 

Warm 12 4.06 3.79 4.67  3.39 2.86 3.44  4.60 4.47 4.75  3.68 3.19 3.68 

Cool 12 5.67 4.95 5.45  4.54 3.84 4.29  7.46 6.03 6.60  5.63 4.67 4.76 

                 
KPIT                 

Warm 0 3.23 2.96 3.02  3.19 2.90 2.97  4.01 3.66 3.90  4.12 3.48 3.83 

Cool 0 3.68 3.37 3.56  4.33 3.70 3.80  4.76 4.17 4.76  5.65 4.28 5.05 

Warm 12 3.81 3.33 3.50  2.91 2.69 2.80  4.44 3.91 4.15  3.49 3.20 3.24 

Cool 12 4.17 3.83 4.41  4.05 3.53 3.71  5.30 4.72 4.81  4.69 3.98 4.01 

 
TABLE 2.  Average RMSE (°F) results for individual models forecasts with seasonal bias correction. 

                              Bold values indicate the most accurate models (i.e., the smallest RMSE) 
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Station 
Season 

Run 
(UTC)       Day 1 Max        Day 1 Min        Day 2 Max         Day 2 Min 

  NGM GFS NAM  NGM GFS NAM  NGM GFS NAM  NGM GFS NAM 

KOKC                 

Warm 0 3.15 2.90 2.80  3.38 2.88 2.94  4.02 3.60 3.41  3.75 3.14 3.33 

Cool 0 3.95 3.56 3.85  4.74 4.10 4.09  6.01 4.56 4.84  5.90 5.06 5.10 

Warm 12 3.76 3.14 2.26  3.13 2.79 2.85  4.28 3.73 3.95  3.55 3.12 3.20 

Cool 12 5.10 4.32 4.50  4.57 3.83 4.03  7.37 5.41 5.79  5.63 4.51 4.55 

                 
KPIT                 

Warm 0 2.84 2.52 2.59  2.89 2.83 2.72  3.28 2.93 3.22  3.72 3.36 3.52 

Cool 0 3.47 3.20 3,43   4.30 3.76 3.70  4.75 3.95 4.48  5.43 4.21 4.94 

Warm 12 3.21 2.71 2.89  2.66 2.60 2.59  3.70 3.16 3.48  3.14 3.13 3.01 

Cool 12 4.10 3.54 4.16  3.97 3.56 3.64  5.19 4.39 4.55  4.66 3.95 4.03 
     

TABLE 3.  Average RMSE (°F) results for individual model forecasts with lagged bias correction. 
                                Bold values indicate the most accurate models (i.e., the smallest RMSE) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

Station 
Season 

Run 
(UTC) Day 1 Max Day 1 Min Day 2 Max Day 2 Min 

      
KOKC      

Warm 0 2.64 2.91 3.34 3.10 

Cool 0 3.25 3.76 4.37 4.75 

Warm 12 3.20 2.74 3.67 2.99 
Cool 12 4.12 3.66 5.36 4.19 

      

KPIT      

Warm 0 2.53 2.57 3.00 3.36 
Cool 0 2.81 3.58 3.72 4.42 

Warm 12 2.78 2.48 3.44 2.87 

Cool 12 3.29 3.45 4.10 3.74 

 
TABLE 4.  Average RMSE (°F) results for consensus forecasts using equally-weighted models. 

                                   Bold values indicate the most accurate models (i.e., the smallest RMSE) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Station 
Season 

Run 
(UTC) Day 1 Max Day 1 Min Day 2 Max Day 2 Min 

      

KOKC      

Warm 0 3.02 3.00 3.82 3.20 
Cool 0 3.82 4.03 5.46 4.86 

Warm 12 3.55 2.85 4.10 3.16 

Cool 12 4.89 3.79 5.84 4.47 

      
KPIT      

Warm 0 2.81 2.77 3.55 3.45 

Cool 0 2.97 3.55 3.89 4.33 

Warm 12 3.16 2.57 3.87 3.03 
Cool 12 3.51 3.48 4.12 3.81 

 
TABLE 5.  Average RMSE (°F) results for consensus forecasts using linear regression. 

                                         Bold values indicate the most accurate models (i.e., the smallest RMSE) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Station 
Season 

Run 
(UTC) Day 1 Max 

Day 1 
Min 

Day 2 
Max Day 2 Min 

      

KOKC      

Warm 0 2.49 2.78 3.18 2.96 
Cool 0 3.15 3.71 4.25 4.72 

Warm 12 2.87 2.63 3.46 2.87 

Cool 12 3.98 3.61 5.09 4.15 

      
KPIT      

Warm 0 2.43 2.50 2.75 3.15 

Cool 0 2.74 3.55 3.62 4.30 

Warm 12 2.65 2.40 3.12 2.79 
Cool 12 3.24 3.41 2.89 3.74 

 
TABLE 6.  Average RMSE (°F) results for consensus forecasts using the Etherton (2004) method. 

                                 Bold values indicate the most accurate models (i.e., the smallest RMSE) 
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FIG. 1.  Mean error distributions using 5°F bins for warm season KPIT model forecasts. 
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FIG. 2.  Frequency of KOKC and KPIT optimal lagged periods for individual model forecasts. 
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FIG. 3.  Frequency of KOKC and KPIT optimal lagged period consensus forecasts, 

                                        using the Etherton (2004) method.  
 


