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ABSTRACT 
 

 A salient benefit of an ensemble prediction system (EPS) is its ability to provide a means of 
estimating forecast error. This study tests the error prediction skill of three EPS features: spread (standard 
deviation) among ensemble members, consistency between MEX/MOS output and the ensemble mean, and 
consistency between consecutive 24-hour runs of an EPS. For 27 stations throughout the northeastern United 
States, 15-day high and low temperature forecasts from calibrated ECMWF ensemble output issued Feb 1 
through May 31 2007 are examined. For each of the 15 forecast days, the significance (from r2 statistic) and 
slope of the error predictor-forecast error relationship is used to determine how valuable each feature is in 
estimating forecast error. 
 For high temperature forecasts in the northeast, ensemble spread and run-to-run consistency are 
most effective at predicting forecast error through 9-day lead times. Although error prediction skill in both drops 
off in the longer ranges, ensemble spread is more useful beyond 9-day lead times. Spread and run-to-run 
consistency are more effective for low temperature forecast error prediction, with ensemble spread still 
performing best beyond 9-day lead times. Model-to-model consistency is only a moderate to weak error 
predictor for high temperature forecasts in the short range. For the sake of comparison of error predictability 
between two regions with disparate climates, data from 21 stations in the southwestern United States are also 
examined. In this region, all three error predictors are consistently effective in anticipating forecast uncertainty 
for both high and low temperatures. 

 
 

1. INTRODUCTION 
 
Numerical weather prediction in the medium and 
extended ranges requires consideration of the 
chaotic tendencies of the atmosphere. Lorenz 
(1963) showed the importance of chaos in non-
periodic flow environments. As a result of chaotic 
systems in which a mere flap of a seagull’s wing 
could alter weather events downstream, he 
surmised the limit of atmospheric predictability to 
be in the vicinity of 14 days (Lorenz 1963, Yoden 
2007).  
 
Ensemble forecasting in light of Lorenz’s chaos 
theory becomes an increasingly important 
alternative to the common deterministic approach. 
An ensemble consists of a control forecast and an 
array of forecast possibilities generated from 
repeatedly perturbing the initial conditions and/or 
model physics of the control. The slight 
perturbation of initial conditions and/or model 
physics allows the model to better account for two 
main sources of rapidly growing forecast errors: 1) 
the natural error in atmospheric conditions read 
into the model and 2) the model’s inherent error 
due to limits in resolution and complexity (Buizza 
2000). Ensembles are probabilistic in that they 
provide a range of forecast possibilities that 
enables the user to obtain a probability of forecast 

verification. The probabilistic model is preferred in 
longer range forecasting because it provides an 
indication of forecast certainty unlike deterministic 
models (Buizza et al. 2004; Richardson 1999; Toth 
and Kalnay 1993). Leith (1974) has also shown 
that the “improvement in skill is appreciable for 
Monte Carlo (ensemble) forecasts as compared to 
conventional single forecasts” further emphasizing 
the benefits of ensembles. Most importantly, 
probabilistic forecasts have introduced the idea of 
predicting forecast error. By analyzing certain 
features in the ensemble, an estimate of forecast 
certainty for each lead time can be deduced. This 
study will focus on the effectiveness of three such 
features or forecast “error predictors.”  
 
The most well known and researched of the error 
predictors is ensemble spread. In this study, 
spread refers to the standard deviation of the 
ensemble members about the ensemble mean. 
Studies by Whitaker (1998) and Barker (1991) 
have shown correlations between ensemble 
spread and forecast error/skill through long range 
forecasts. These findings indicate that ensemble 
spread is a viable forecast error predictor. 
Forecast error sensitivity to two other possible 
error predictors, model-to-model and run-to-run 
consistency, will be examined. Although 
overlooked and often overshadowed by the 

  



importance of ensemble spread in predicting 
forecast error, these two predictors could prove to 
be even more beneficial in the improved 
evaluation of ensemble forecasts. Model-to-model 
consistency refers to the level of agreement 
between the ensemble mean and other 
deterministic products. The purpose of testing 
inter-model consistency as an error predictor is to 
determine the possible value of a poor man’s or 
grand ensemble. A group of deterministic products 
compose the members of a poor man’s ensemble.  
Palmer et al. (2000), in their study of seasonal 
weather pattern predictability, found that a 9-
member multi-model ensemble had higher 
forecast skill scores than the 9-member single-
model ensemble. Discovering a relationship 
between inter-model variability and forecast error 
would improve the analysis and utilization of poor 
man’s ensembles. Run-to-run consistency refers 
to the level of agreement between two consecutive 
ensemble runs for a common forecast time. 
 
If forecast error is sensitive to any of the three 
error predictors and if the relationship is 
statistically significant, the predictor can be used to 
estimate temperature forecast error. Examining 
the nature of forecast error dependence upon the 
three predictors through a 15-day forecast 
establishes an ensemble evaluation “suite” that 
could improve the anticipation of error in medium 
range temperature forecasting.  
 
Section 2 contains information on the ECMWF 
EPS which provides the raw dataset for this study, 
and a brief discussion of AER’s eCast™ product. 
Section 3 outlines the methodology and analysis. 
Section 4 presents the results for the three error 
predictors being tested for high and low 
temperatures in the northeast and additionally in 
the southwest. Section 5 provides a discussion of 
the results and conclusions. Section 6 proposes a 
regional dependency of error prediction skill and 
possible new directions for research. 
 
2. DATA 
 
Raw data for this study is based upon the 
European Centre for Medium Range Weather 
Forecasting EPS. ECMWF EPS provides forecasts 
with lead times extending out to 15 days. The 
ensemble is populated from 50 perturbations of 
the control using singular vectors, which represent 
axes of maximum error growth in the atmosphere. 
ECMWF calculates 50 singular vectors in order to 
create the 50 perturbations along these axes 
(Buizza et al 2004). The larger ensemble is 

beneficial to this study as it has been proven to 
outperform smaller ensembles in medium to longer 
ranges forecasts (Atger 1999; Buizza et al. 2004). 
As of 2006, the EPS analyzes 62 vertical levels 
through the 15 days with horizontal grid resolution 
of 50 km (TL399 spectral resolution) for lead times 
of 0-10 days, reduced to 80km grid resolution 
(TL255 spectral resolution) for days 9-15 (ECMWF 
HTML User Guide). 
 
Atmospheric and Environmental Research Inc. in 
Lexington, MA creates the eCast™ product as a 
user-friendly method of relaying ensemble 
information. eCast™ uses raw ECMWF EPS data 
and applies ensemble bias correction and 
calibration. Calibration of the ensemble is a spread 
amplification technique that is used to better 
simulate the actual spread in the forecast. It 
corrects the under-dispersive tendencies of an 
EPS. Data used in this study originates from a 
research and development version of eCast™ that 
was operating in February 2007. 
 
eCast™ calibrated ECMWF 12 UTC high and low 
temperature forecasts are taken from Feb 1 
through May 31, 2007 creating a dataset of 120 
forecast validation days. Each validation day has 
15 corresponding forecast days. Data from 27 
stations across the northeastern United States is 
analyzed. The domain extends from Virginia to 
Maine, from 33.7˚N to 44.3˚N, 69.8˚W to 80˚W. 
Southwest data from 21 stations is later analyzed 
from California to Colorado, encompassing the 
area from 32˚N to 41˚N, 104.7˚W to 122.4˚W.  
 
For inter-model comparisons, MOS/MEX 12 UTC 
high and low temperature forecast data is taken 
from Feb 1 through May 31, 2007 as well. Each of 
the 120 validation days has only seven 
corresponding forecast days. Data is drawn from 
the same 27 northeastern and 21 southwestern 
stations. High and low temperature observations 
are from the same time period (1 Feb – 31 May 
2007) for the 27 northeastern stations and the 21 
southwestern stations. 
 
3. METHODOLOGY AND ANALYSIS 
 
3.1 Quality Control 
 
Before calculations are performed, all data must 
be quality controlled. Initially an ensemble mean is 
taken over the 51 ensemble members. Due to 
ensemble forecasts being collected from early 
tests of the research and development version of 
eCast™, there are missing data points flagged 

  



with the value -999. These data points have higher 
frequencies in February and March, resulting 
primarily from data delivery problems by the 
ECMWF data provider.  Fortunately such missing 
values occurred for all ensemble members in a 
given forecast so the ensemble mean could be 
safely calculated, producing a -999 for each 
validation day with missing forecasts. The 
observations similarly contain flagged missing 
points. Forecast error is calculated using the mean 
absolute error (│Ensemble Mean temperature – 
Observed temperature│). Because error is a 
function of ensemble mean and observations, a 
quality mask that marks the positions of valid 
points is applied enabling an error calculation to 
occur only where there are valid observations and 
ensemble means. This shrinks the data set slightly 
below 120 validation days for each station.  For 
each of the error predictors, this mask has to be 
tailored slightly. These alterations will be 
discussed in the respective sections below. 
 
3.2 Ensemble Spread 
 
This portion of the study serves to re-examine the 
relationship between ensemble spread and 
forecast error. The re-examination attempts to 
reveal more detailed characteristics of the spread-
error relationship through the medium range and 
into the early extended range forecasts.  
 
After calculating standard deviation of the 
ensemble members, the quality mask is applied to 
the set of ensemble spread to ensure that the 
same validation days are compared. The 
ensemble spread axis is divided into 20 one-
degree bins. Each bin of ensemble spread 
contains an amount of corresponding forecast 
error values. Taking the mean of these forecast 
error values produces one forecast error point per 
bin. Bins with fewer than five forecast error values 
are skipped in the mean calculation because 
means taken over fewer than five points become 
excessively noisy.  
 
A linear regression is performed for each bin’s 
forecast error mean. The regression is weighted 
by the number of forecast error points in order to 
obtain a slope that represents the majority of the 
data. The correlation coefficient between the 
forecast error averages and the binned ensemble 
spread is also calculated and squared in order to 
obtain the coefficient of determination (r2). This 
process is performed for each of the 15 forecast 
days for high and low temperature forecasts. 
 

3.3 Model-to-model Consistency 
 
This study further investigates the value of using 
poor man’s or grand ensembles by testing the 
ability of model-to-model consistency to predict 
forecast error. The eCast™ ensemble mean is 
compared to deterministic MOS/MEX output.  MEX 
provides forecasts out to seven days, so only 
ensemble forecast days 1-7 are considered in this 
portion of the study. The MEX data contains 
flagged missing values, so the original quality 
mask is expanded to exclude such points from 
calculations. In order to obtain a measure of 
agreement between MEX and ensemble means 
that can be easily plotted against forecast error 
and evaluated, a simple absolute model difference 
is taken (│ Ensemble mean temperature – MEX 
temperature│).  
 
Forecast errors are plotted versus the forecast 
difference between the two models. Model 
differences are similarly divided into 20 one-
degree bins. Forecast error means in each bin are 
calculated and plotted. A linear fit is performed, 
weighted to error means over bins containing 
larger amounts of forecast error points. Extracting 
the slope of the regression line and calculating the 
coefficient of determination (r2) to obtain a 
measure of relationship significance, the process 
is repeated for each of the seven forecast days for 
high and low temperatures. 
 
3.4 Run-to-run Consistency 
  
Forecasters often take note of run-to-run 
consistency in observing model data, but studies 
on the effectiveness of run-to-run consistency in 
predicting forecast error are sparse. In order to 
calculate the difference between two consecutive 
forecast runs for a single forecast day, the 2-day 
forecast on a validation day is subtracted from the 
1-day forecast on the following validation day (│ (2 
day temperature forecast on valid day 1) – (1 day 
temperature forecast on valid day 2) │). This 
absolute run difference shows how forecasts for a 
specified lead time vary from one validation date to 
the next. However, this formula introduces some 
restrictions in that 1) only forecast days 2-15 for 
each valid day can be compared because forecast 
day 1 cannot be subtracted from forecast day 0 if 
such a lead time does not exist, 2) the quality 
mask must be expanded to prevent missing 
forecasts in both validation day’s from being run 
into the equation and 3) forecast error must be 
calculated for the 1-day forecast issued on the 
later validation day.  

  



 
Twenty one-degree bins of the difference between 
the consecutive runs are created and the mean of 
the forecast errors within each bin is again 
calculated and plotted. The linear regression line is 
weighted to bin error means taken over larger 
amounts of data. Extracting the slope of the 
regression line and calculating r2, the process is 
repeated for 2-15 day lead times for high and low 
temperature.  
 
4. RESULTS 
 
Three pentads (5-day averages) of slope and r2 

divide the 15-day forecast period of high and low 
temperature into early, medium and long range 
lead times. For northeast high temperature 
forecasts, the ensemble spread- forecast error 
relationship showed generally high significance 
(r2>.6) through the middle pentad (5 -10-day lead). 
Large slopes through the middle pentad represent 
high forecast error sensitivity to ensemble spread 
as well. There is a rather abrupt fall in relationship 
significance and error sensitivity to spread in the 
final pentad (11 - 15-day lead), where both tend to 
level off closer to zero (Fig. 1a). Low temperature 
forecasts show a different trend, with relationship 
significance remaining high (r2>.6) and error 
sensitivity to ensemble spread increasing 
throughout the forecast days (Fig. 1b). A sensitivity 
max occurs in the middle pentad and a 
significance max occurs in the final pentad.  
 
Due to having only seven forecast lead times, 
model consistency results are presented for each 
forecast day. For northeast high temperature 
forecasts, significance remains high through 
forecast day 5, decreasing only slightly thereafter 
while error sensitivity to model disagreement 
steadily drops throughout the period (Fig. 2a). Low 
temperatures on the other hand show drastic 
fluctuations in relationship significance, with 
relatively low forecast error sensitivity throughout 
the period (Fig 2b). 
 
Similar to ensemble spread results, three pentads 
are taken again for run-to-run consistency results. 
The first pentad differs slightly however in that it 
contains averaged values for forecast days 2-5 
due to the inability to compare a previous run for 
forecast day 1 as mentioned in section 3.3. For 
northeast high temperatures, significance remains 
extremely high through the first pentad, dropping 
off rapidly toward the end of the forecast period 
(Fig 3a). Slope is also quite large for the 1st 
pentad, and drops off even more rapidly through 

the middle range. Day-to-day analysis (Fig 3b) 
actually shows relationship significance over 60% 
and large slope through most of the middle pentad 
as well, with a precipitous drop at the 9-day 
forecast. Although significance and sensitivity drop 
in the latter days of the 2nd pentad for low 
temperatures as well, the decline is more gradual 
throughout the period. As with high temperature 
forecasts, there is a maximum significance and 
error sensitivity in the 1st pentad.  
 
Southwestern results are presented in the same 
form for the sake of regional comparison. For both 
high and low temperature, forecast error is very 
sensitive to spread for all three pentads, showing 
high and unvarying significance throughout (Fig. 
4a-b). Error sensitivity to model agreement (Fig. 
5a-b) in the southwest is slightly greater than in 
the northeast, showing more significance for low 
temperatures than for high temperatures where 
sensitivity decreases in later forecasts. Error 
sensitivity to run-to-run consistency in the 
southwest is slightly greater for high temperatures 
while the significance of the relationship is greater 
for low temperatures (Fig. 6a-b). In general, error 
sensitivity (slope) and the significance of the 
sensitivity (r2) are larger and more consistent in 
the southwest than in the northeast.  
 
5. DISCUSSION AND CONCLUSIONS 
 
The two values calculated in this study (slope and 
determination coefficient, r2) give an overall 
indication of how well forecast error can be 
predicted by ensemble spread, inter-model 
agreement, and run-to-run consistency. The slope 
shows the sensitivity of forecast error to the 
predictor being tested. In the estimation of forecast 
error, the slope is essentially a “sensitivity 
multiplier.” Specifically, forecast uncertainty can be 
estimated using the linear model ax + b, where a 
is the slope of the linear regression, x is the value 
of the error predictor on a given forecast day, and 
b is the offset of the regression line. It is important 
to note that this study utilizes the absolute values 
of forecast error, thus providing information 
regarding forecast uncertainty rather than error. 
Corresponding determination coefficients indicate 
the significance of error estimates made with the 
linear model. Higher coefficients validate the use 
of error estimates made using the calculated slope 
and offset. This couplet of information is especially 
important in evaluating and ranking the value of 
the three error predictors  
 
 

  



5.1 Ensemble Spread 
  
For the northeast, this study generally verifies 
previous findings that indicate the ability of 
ensemble spread to predict forecast error, while 
providing greater detail on the nature of this 
spread-error relationship. For high temperature 
forecast error, ensemble spread is an excellent 
predictor through the middle pentad (specifically 
through 8 day lead times). Thereafter, ensemble 
spread becomes almost useless in predicting high 
temperature forecast error. Low temperature 
forecast error is better predicted by ensemble 
spread in middle and long range pentads, with 
lower ability to predict error in the early (1-5 day) 
lead times. In the day-to-day analysis, the increase 
in forecast error sensitivity to ensemble spread 
through the earlier forecast period is due to the 
fact that early lead times tend to have higher 
ensemble spread than forecast error. As lead 
times progress, forecast error grows more rapidly 
than ensemble spread causing increasing slopes 
in the spread-error analysis. This increasing trend 
leads to a maximum of error sensitivity to 
ensemble spread in lead times of 7-9 days for both 
high and low temperature. The leveling trend of 
error predictability for low temperature beyond 
forecast day 9 is not unusual as the lead time 
nears Lorenz’s aforementioned limit of 
predictability. However, the more sudden drop off 
in error predictability for high temperature at the 9-
day lead time (3rd pentad) certainly requires further 
investigation. 
 
5.2 Model-to-model consistency 
 
Results indicate that model-to-model consistency 
performs rather poorly at indicating error in high 
and especially low temperature forecasts. For high 
temperatures, significance and forecast error 
sensitivity to inter-model consistency decline 
steadily with increasing lead times suggesting this 
error predictor becomes less valuable in longer 
range forecasts. Low temperature forecast error 
shows consistently low dependence upon inter-
model agreement, with a randomly fluctuating 
relationship significance throughout the period. 
The low skill in error prediction for low 
temperatures could be due to model deficiencies 
in capturing nighttime boundary-layer radiative flux 
(Betts et al. 1997; Morcrette 2001). The 
differences in each model’s nighttime boundary 
layer schemes could also cause this loss of error 
predictability. Furthermore, the MOS product, 
which is largely governed by climatology at lead 
times as early as seven days introduces a new set 

of errors into the model comparison. Using a 
variety of other models that do not rely so heavily 
on climatology would be beneficial in making 
general conclusions regarding the value of model-
to-model consistency in predicting error. 
 
5.3 Run-to-run consistency 
 
Run-to-run consistency proves to be the best error 
predictor for both high and low temperatures in the 
short range and early middle range forecasts, with 
moderate extended range skill in error prediction 
for low temperatures. The highest significance 
coupled with extremely high forecast error 
sensitivity verifies the ability of run-to-run 
consistency to predict forecast error in the first 
pentad. Low temperature results show similar 
trends, but with improved error prediction skill in 
the longer ranges. The significant loss of error 
predictability for low and especially high 
temperature in the long range forecasts again 
requires further investigation.  
 
At this point, a summary of the most skillful error 
predictors for each pentad of lead times would fail 
to show an adequate error predictor for high 
temperature in the longer range forecasts. 
Because this study aims to improve error 
predictability in all parts of the 15-day forecast 
period, results from the southwest are used to 
compare results regionally and provide a broader 
understanding of error predictability.  
 
6. REGIONAL DEPENDENCE OF ERROR 
PREDICTION AND NEW DIRECTIONS 
 
Southwest results show higher significance and 
forecast error sensitivity to each error predictor. 
Comparing the 3rd pentad skill in error prediction, 
forecast error sensitivity to ensemble spread is 
almost equivalent to that of run-to-run consistency. 
However, slightly higher relationship significance is 
found for ensemble spread. Using a combination 
of northeast and southwest results, a summary of 
error prediction skill guidance through the 15-day 
forecast period is obtained (table 1).  
 
It is worth discussing possible reasons for 
increased error predictability in the southwest. 
More stations in the northeast experience a drastic 
seasonal shift in the months observed in this study 
while some low-elevation stations in the southwest 
experience more gradual seasonal changes. 
Northeast stations are located in an area of 
greater springtime baroclinic instability, especially 
compared to the southernmost stations in the 

  



southwest. Northeastern weather is more 
continental showing greater diurnal temperature 
fluxes, while some southwestern stations are 
highly influenced by a marine air mass. As a 
result, the northeast is more likely to have greater 
and more unpredictable forecast errors, causing 
the error predictors to lose value rapidly in the 
longer range forecasts. 
 
Comparing two climatologically disparate regions 
was beneficial in broadening the applicability of 
this study. Such error prediction guidance may be 
general, but can be of great value to forecasters. 
Improving the anticipation of model error provides 
weather-sensitive corporations and futures traders 
with a better idea of forecast verification 
probability. Nonetheless, the study can be 
extended. Datasets encompassing multiple 
seasons could be analyzed in order to determine a 
possible annual cycle of error predictability. For 
inter-model consistency, comparing two 15-day 
forecast models instead of the 7-day MOS would 
be beneficial in assessing long range error 
prediction skill. In terms of data quality control, 
applying a single comprehensive mask to all three 
variables would ensure consistency in validation 
days being used in calculations. Finally, in order to 
better account for the possible regional 
dependence, normalizing the results with 
climatological forecast variability for each region 
may provide more universal conclusions. 
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Figures 1-3: Northeast Results 

 
Fig. 1a.  Northeast high temperature forecast error sensitivity to ensemble spread as indicated by the slope presented 
with the significance of that slope in predicting forecast error. Pentads with significance exceeding .6 have bold 
crosshatching. Ensemble spread is valuable for error prediction through middle range forecasts, and loses value in 
the final pentad.  
 

 
Fig. 1b.  Northeast low temperature forecaster error sensitivity to ensemble spread (slope) with significance of the 
slope as a predictor of forecast error. Low temperature error sensitivity to ensemble spread is best for middle and 
long range forecasts as seen in large slopes in 2nd and 3rd pentads. Significance of ensemble spread as an error 
predictor is high (>.6) throughout all 15 days. 

  



 
Fig. 2a.  Northeast results for the ability of MOS/MEX and eCast™ ensemble mean temperature forecast agreement 
to predict high temperature forecast errors. Days with significance exceeding .6 have bold crosshatching. Inter-model 
agreement is only moderately useful as a predictor of forecast error for short range (1-5 day lead times). This is 
evident through moderate forecast error sensitivity to model agreement (slope) and high relationship significance 
through a 5-day forecast.  

 

 
Fig. 2b.  Northeast results for the ability of MOS/MEX and eCast™ ensemble mean temperature forecast agreement 
to predict low temperature forecast errors. Days with significance exceeding .6 have bold crosshatching.  There is 
little sensitivity of low temperature forecast error to inter-model agreement for all 7 lead times as seen in consistently 
small slopes. There is also generally low yet variable significance to the low error sensitivity results.  
  

  



 
Fig. 3a.  Northeast high temperature forecast error sensitivity to consistency between consecutive 24-hour runs of the 
ECMWF eCast™ ensemble. Pentads with significance exceeding .6 have bold crosshatching.  Skill in predicting error 
is high for run-to-run consistency in the short range, with high sensitivity (large slope) and high relationship 
significance. Run-to-run consistency becomes less valuable in predicting forecast error in the middle range and 
especially the long range.  
 

 
Fig. 3b.  Multi-day averages (fig. 3a) are taken over this day-to-day analysis. Examining individual days indicates 
precisely where in the medium range a loss of skill in predicting error occurs for run-to-run consistency. Changes in 
ECMWF resolution or incorporation of climatology in eCast™ forecasts around 9-day lead times could be responsible 
for this sudden loss of error predictability.  

 

  



 
Fig. 3c.  Northeast low temperature forecast error sensitivity to consistency between consecutive 24-hour runs of the 
ECMWF eCast™ ensemble. Pentads with significance exceeding .6 have bold crosshatching. Compared to high 
temperature forecast errors (fig. 3a), the predictability of error using run-to-run consistency remains high in the short 
range, and becomes moderate in the medium and long range forecasts. The drop off in error predictability of run-to-
run consistency in middle range lead times is more gradual for low temperatures.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



Figures 4-6: Southwest Results 

 
Fig. 4a.  As in Fig. 1a but for the southwestern United States. Compared to northeast results (Fig. 1a), ensemble 
spread is more consistently valuable as an error predictor throughout the 15 forecast days, lacking the sudden loss of 
error prediction skill at the 9-day lead time.  
 

 
Fig. 4b.  As in Fig. 1b but for the southwestern United States. Forecast error sensitivity to ensemble spread, and the 
significance of the spread-error relationship both reach a maximum in the long range, showing the increasing value of 
ensemble spread as an error predictor further out in a forecast. Compared to northeast results (Fig. 1b), ensemble 
spread is more valuable as an error predictor through the 15 forecast days. 

  



 
Fig. 5a.  As in Fig. 2a but for the southwestern United States. Days with significance exceeding .6 have bold 
crosshatching.  Similar to the northeast, inter-model consistency is a moderate error predictor in the short range, 
losing some skill in later lead times. Compared to northeast results (Fig. 2a), there is a noted improvement in error 
prediction skill as seen in larger slopes and higher significance indices.  
 

 
Fig. 5b.  As in Fig. 2b but for the southwestern United States. Low temperature forecast error is moderately predicted 
by inter-model agreement, contrasting rather drastically with the low error sensitivities and variable relationship 
significance found in the northeast results (Fig. 2b) 

  



 
Fig. 6a.  As in Fig. 3a but for southwestern United States. Pentads with significance exceeding .6 have bold 
crosshatching. Run-to-run consistency again predicts error best in the short range, losing skill in error prediction in the 
middle pentad. The loss of error prediction skill is similar, but not as dramatic as that found in the northeast for run-to-
run consistency (Fig. 3a).  
 

 
Fig. 6b.  As in Fig. 3c but for southwestern United States. Although significance remains high throughout (>.6), 
forecast error sensitivity reaches a maximum in the final pentad. Greater forecast error sensitivity to run-to-run 
consistency in the longer range is inconsistent with northeast results that indicate a drop in sensitivity in longer range 
forecasts (Fig. 3c).  
 
 
 
 
 
 
 

  



 Pentad 1 (1 – 5-day lead 
time) 

Pentad 2 (6 – 10-day 
lead time) 

Pentad 3 (11 – 15-day 
lead time) 

High Temperature Run-to-Run Consistency Ensemble Spread Ensemble Spread 

Low Temperature Run-to-Run Consistency Ensemble Spread Ensemble Spread 

Table 1: The most effective predictors of error in the each forecast range based on combinations of highest 
relationship significance (r2) and highest forecast error sensitivity to each error predictor (slope). These final 
conclusions are drawn from high and low temperatures results in the northeast and southwest combined. Ensemble 
spread clearly dominates error predictability in longer lead times, while run-to-run consistency is more valuable in 
short range error prediction.  
 

  


