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ABSTRACT 
 

The amount of forecast skill involved when issuing tornado and severe thunderstorm warnings is closely related 
to the type of storm that causes the severe weather.  Storms from eight tornado outbreaks are classified and 
correlated with tornado warnings and severe thunderstorm warnings.  These warnings were verified, missed, or 
shown to be false alarms by relating them with storm reports that match temporally and spatially with those in 
the Storm Prediction Center’s database.  Certain forecast parameters, including the critical success index (CSI), 
probability of detection (POD), false alarm ratio (FAR), and warning lead time are calculated for each storm type 
and for each type of warning.  Because it was not practical to manually classify these storms (~50,000 entities), 
a decision tree was trained on a subset of manually classified storms using Quinlan’s C4.5 algorithm.  The 
decision tree was then used to automatically classify storms as being of one of four types: supercellular, linear, 
pulse or unorganized.  It was found that both tornado warnings and severe thunderstorm warnings issued for 
isolated supercells and convective line storms have higher CSI, higher POD, and lower FAR scores than those 
issued for pulse and non-organized storms.  Lead times were consistently longer for supercell and line storms, 
while usually very short for pulse and non-organized storms.  We conclude that measures of forecast skill are 
particularly sensitive to the type of storm. Thus, any measurement of forecast skill, such as the year-over-year 
skill measure of an individual forecast office, has to take into account the types of storms in that office’s warning 
area in the time period considered. 

_______________________________ 
 
 
1. MOTIVATION 
 
     Verifying that a tornado which was warned for 
did in fact occur assures a forecaster that he/she 
made the right decision in a dangerous situation.  
Conversely, issuing a tornado warning when 
conditions seem imminent, and having no tornado 
touch down can baffle a forecaster many times 
during his/her career.  Studies have shown that 
tornado warnings have improved since the 
introduction of the WSR-88D (Simmons and Sutter 
2005).  Even so, there is still much room for 
improvement.  This raises the question if other 
factors aside from our technological limitations are 
responsible for the quality of our tornado warnings.   

     We hypothesize that the type of the storm that 
spawns these tornadoes makes it easier or more 
difficult to warn for them.  Surely, the presence of 
forecast parameters such as vertical wind shear, 
instability, and lift are key players in tornado and 
severe thunderstorm development.  However, do 
certain parameters carry more weight than others, 
and if so, do their individual values vary in 
magnitude depending on the type of storm in 
question?  In this paper, we will define and 
analyze certain types of storms and their 
parameters, establish a methodology to 
automatically classify storms, and examine if 
certain types of storms spawn tornadoes or 



become severe that are either easier or more 
difficult for which to warn. 
 
 
2.  PARAMETERS 
 
a. Storm-Type Classification 
 
     In order to pair a tornado or severe 
thunderstorm warning to a specific storm type, a 
storm classification system must be defined.  For 
the sake of simplicity, four different storm types 
were identified.  The first is “isolated supercell”, 
defined as a thunderstorm with a rotating updraft. 
(Browning 1977) (Doswell and Burgess 1993).  
Secondly, we examined a “convective line” of 
storms, defined by Doswell (2001) as two or more 
cells that are close enough together to produce 
one single outflow boundary.  It should be noted 
that the presence of said outflow boundary in the 
radar reflectivity field is not the primary trait for 
identification of convective lines – instead we 
looked for cells that were close together.  Third, 
we examined “pulse storms”, defined for our 
purposes as any thunderstorm that is strong or 
severe but does not possess a mesocyclone and 
rotating updraft.  Such a storm could expect to 
produce a landspout tornado (Lee 1997).  Lastly, 
any storm that does not meet the previous criteria 
was classified as a “non-organized storm”.  
Originally, the storm-type “convective line” was to 
be further delineated into “embedded supercells” 
and “squall line,” however this distinction was 
abandoned for the sake of simplicity. 
     Since it would have been too time-consuming 
to manually classify all of the storms in all of the 
radar images for all of the cases, we sought to 
automatically classify the cases. In order to do so, 
a decision tree (Quinlan 1996) was trained against 
the manual classification of all the storms (about 
1000 total) in 31 different radar images from three 
different days.  It is important to note that the 
purpose of this project was not to establish a more 
detailed SCIT-type algorithm for automated storm 
type identification (Johnson et al. 1998).  Rather, it 
was necessary to analyze larger data sets in a 
more practical and less time consuming manner 
instead of identifying each and every storm 
through hand analysis. 
 
b. Identification Variables 
 
     In order to properly classify these storms 
manually in our training cases, certain 
fields/variables were used for identification 
purposes.  The most obvious variable is radar 

reflectivity, as seen in our study in the reflectivity 
as the lowest altitude (0.5 degree beam tilt).  
However, the radar reflectivity alone is not enough 
to draw conclusions necessary for our storm type 
classification system.  Thus, we incorporate many 
experimental WSR-88D and multi-sensor 
algorithms.  Perhaps most important is the 0 – 3 
kilometer merged azimuthal shear, a three-
dimensional wind parameter calculated by using a 
linear, least squares mathematical process 
blended together from multiple radars (Smith and 
Elmore, 2004).  Such a parameter allows us to 
easily pick out low-altitude rotation and thus 
determine if the storm has rotation associated with 
it.  Almost as important for manually classifying 
these storms is the thirty minute rotation track, 
allowing us to easily classify storms that have a 
history of rotation. 
     Two hail parameters, POSH (Probability of 
Severe Hail) and MESH (Maximum Expected Size 
of Hail) also proved invaluable in identifying storm 
types manually (Witt et al. 1998).  High values of 
POSH and MESH almost always coincide with 
high values of merged azimuthal shear and thirty 
minute rotation track values, further supporting 
distinctions between isolated supercells and 
single-cell pulse storms.  It is intuitive that the 
largest hail exists in the strongest updraft, and a 
supercell thunderstorm possesses the strongest 
updraft of any thunderstorm.  Lastly, the VIL 
(Vertically Integrated Liquid) also plays a key role 
in storm cell identification (Green and Clark 1972).  
Large values of VIL imply large hail and/or very 
heavy rain, both distinctive qualities of most 
supercell thunderstorms. 

 
 

3. METHODOLOGY 
  
a. Polygon Identification and Computer Training 
 
     Three cases of tornado outbreaks were chosen 
to be manually classified for this project: 28 March 
2007, 5 May 2007, and 23 May 2007.  All of the 
collected data was gathered from the CONUS 
WDSS-II system – a multi-radar, multi-sensor 
severe weather applications package 
(Lakshmanan et al. 2007).  Utilizing the variables 
listed in the previous section in the radar data, 
polygons were manually drawn around individual 
storm cells.  Each polygon corresponded to a 
specific type of storm, thus completing the 
classification of each storm in range of the radar 
(FIGURE 1 TOP A).  For each training data set, 
this was done every one to two hours of the 
available radar data.  Once the manual 



 

FIGURE 1.   Illustration of the manual classification of storms and the different parameters used to classify them.  Storms over 
central Kansas at 5:02:01 UTC on 6 May 2007:  Top A: Reflectivity at lowest altitude and hand-drawn polygon of 
storms, Top B: Grid hand analysis of storms, Top C: Max MESH over 30 minute interval, Middle A: Merged 0-3 km 
Azimuthal Shear, Middle B: Merged Reflectivity Composite, Middle C: MESH, Bottom A: POSH, Bottom B: 30 min 
rotation track, Bottom C: VIL 

 
 
classification was completed, the unmodified 
original radar images were processed with a “k-
means” clustering program (Lakshmanan et al. 
2003) in order to identify storms at different 
resolutions (FIGURE 2).  Various statistical 
properties such as the minimum, average and 
maximum values of other gridded fields (POSH, 
MESH, azimuthal shear, etc.) were computed 
within each cluster. These clusters were then 
overlaid with the drawn polygons to see which 
level of the k-means cluster identification 
performed the best in identifying storm clusters.  
Cluster attributes at the desired scale (160 and 

480 square kilometers for our study) were then 
used to classify the storms automatically (FIGURE 
3 TOP A) using a decision tree. 
     We used Quinlan’s C4.5 algorithm for creating 
decision trees, which examines the cluster 
attributes of our data one-by-one and picks the 
cluster attribute and threshold at which the 
information gain is maximized (Kullback and 
Leibler 1951).  Intuitively, this step can be thought 
of as finding the attribute that will separate the 
training dataset into two parts, such that the two 
parts are as difference from one another as 
possible.  The training set is then divided into two 



 
 
FIGURE 2.  The different scales of K-means as they correspond to the radar reflectivity.  Storms in Texas panhandle at 5:58:00 

UTC on 6 May 2007: A: Reflectivity at Lowest Altitude, B: K-means scale 0 (20 square kilometer resolution), C: K-
means scale 1 (160 square kilometer resolution), D: K-means scale 2 (480 square kilometer resolution) 

 
 
parts based on this attribute and threshold and the 
C4.5 algorithm is applied recursively to each part. 
The algorithm stops when all the samples at any 
leaf of the tree correspond to the same storm type.   
In our study, we kept behind a randomly chosen 
10% of the training samples as a validation set.  
The decision tree extracted from 90% of the 
training set was pruned (branches cut off) based 
on this validation set (i.e. any branch of the 
decision tree that gave the wrong result for the 
storm type was pruned to prevent overfitting of the 
decision tree to the training data).  Each node of 
the pruned decision tree provides the storm type 
corresponding to the majority of the samples from 
which the node was trained.  Although the storms 

classified by the decision tree would not always be 
labeled correctly (the decision tree did not have a 
100% success rate when classifying these 
storms), one must keep in mind that on any single 
radar image, usually containing in upwards of fifty 
storms, very few of these actually spawned a 
tornado or became severe at any particular time. 
     The decision tree that was automatically 
extracted was then analyzed to ensure that the 
embedded logic was reasonable. The decision 
tree logic was as follows (FIGURE 4):  If the mean 
reflectivity within the cluster is less than a certain 
value, the decision tree returns a non-organized 
storm.  If the mean reflectivity is above this value, 
the decision tree moves on to the direction 



 

FIGURE 3.  Storms classified by the decision tree and the variables used to classify them. Storms in Texas panhandle at 5:58:00 
UTC on 6 May 2007:  TOP A: Reflectivity at lowest altitude and unbiased automated storm-type classification at storm 
centroid by decision tree (“L” stands for convective line, “S” stands for supercell thunderstorm), TOP B: Reflectivity at 
lowest altitude and hand analysis of storms, TOP C: Max MESH over 30 minute interval, MIDDLE A: Merged 0-3 km 
Azimuthal Shear, MIDDLE B: Merged Reflectivity Composite, MIDDLE C: MESH, BOTTOM A: POSH, BOTTOM B: 30 
min rotation track, BOTTOM C: VIL 

 
 
(movement of storm), low level shear and VIL 
parameters.  If the low level shear is below a 
certain value and the maximum VIL is also below 
a certain value, the decision tree yields a non-
organized storm.  If the maximum VIL is above this 
value however, the decision tree yields a pulse 
storm.  This process continues through all of the 
available variables until every identified storm is 
classified.  It is important to note that one of the 
most influential parameters in the decision tree 
when identifying a convective line of storms is the 
aspect ratio.  In addition, although some of these 
traits are not accurate for all storms (i.e. dBZ can  

 
be quite low in a low-precipitation supercell) the 
decision tree was built such that the traits are 
correct in the gross statistical sense. 
 
b. Warning Verification 
 
     With the decision tree trained, those same 
cases were run through it a second time, along 
with cases from 21 April 2007, 10 May 2006 and 
14 May 2006.  The classified storm data was then 
overlaid with the tornado warning polygons issued 
by the respective National Weather Service 
Forecast Offices for that particular area, in addition 
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FIGURE 4.  Visual representation of low precipitation part of the decision tree used to automatically classify storms 
 
 
to the local storm reports taken from the Storm 
Prediction Center’s database.  This database is a 
collection of all the storm reports gathered by the 
local National Weather Service Forecast Offices.  
Although this data is considered preliminary and 
needed to be slightly quality-controlled at times, 
we believe that the data are sufficient for what we 
are trying to accomplish.  Note that a tornado was 
considered warned if its touchdown coincided both 
temporally and spatially with a warning polygon.  
Conversely, if a tornado touched down and no 
warning was issued, the tornado was considered 
“missed.”  Furthermore, if a warning was issued 
and no tornado occurred, the warning was 
considered a “false alarm.”  The same method 
was used for severe thunderstorm warnings, using 
a hail report, a high wind report, a tornado report, 

or a combination of these three to confirm the 
occurrence of a severe thunderstorm. 
     The forecast skill of a set of warnings is 
measured in terms of the Critical Skill Index (CSI), 
Probability of Detection (POD) and False Alarm 
Ratio (FAR).  
 
 
The CSI is equal to:                    hits_________ 

        hits + misses + false alarms 
 
 
The POD is equal to:         hits____ 

                      hits + misses 
 
 

The FAR is equal to:        false alarms______ 
         hits + false alarms 



 
     The automated classification creates multi-
category results.  The skill of the classifier can be 
measured in terms of category-by-category 
accuracy. The overall skill can be measured using 
the True Skill Statistic (TSS) (Woodcock 1976). 
 
 
The TSS is equal to: 
 
       hits____  -                false alarms__________ 
hits + misses        false alarms + correct negatives 
 
 
4. RESULTS 
 
a. Decision Tree 

 
     A multi-category classification decision tree 
was generated from the manually classified 
images to automatically classify storms in a much 
bigger data set.  The training set consisted of 28 
snapshots (1,356 storms) chosen from 28 March 
2007, 5 May 2007 and 23 May 2007.  The three 
days worth of data to train this program resulted in 
hundreds of storms that were classified manually.  
The decision tree was able to capture the data set 
(TABLE 1).  Isolated supercells were identified 
correctly about 73% of the time, while convective 
lines were identified correctly 80% of the time and 
pulse storms 72%.  The overall True Skill Statistic 
of the decision tree for the training set was 0.71.   
FIGURE 3 TOP A illustrates the automated 
classification of storms from the decision tree.  
Note that “L” stands for convective line, while “S” 
stands for supercell thunderstorm.   
     We than tested this decision tree on an 
independent testing set consisting of 22 snapshots 
(1,069 storms) chosen from 21 April 2007, 10 May 
2006 and 14 May 2006.  The decision tree had an 
overall True Skill Statistic of 0.58 (TABLE 2).  It 
should be noted that the decision tree is unbiased 
on all four categories. For example, supercells are 
correctly identified 63% of the time while 61% of 
all storms that are identified as supercells are truly 
supercells.  For our final statistical output, we 
added two more cases to our study: 2 January 
2006 and 13 January 2006.  This brought our final 
tornado count to 263. 
 
B. Tornado Warning Forecast Skill Parameters 
 
     From the gathered data, we can compute 
certain tornado warning diagnostic parameters, 
such as Critical Success Index (CSI), Probability 
of Detection (POD) and False Alarm Ratio (FAR) 

(Donaldson et al. 1975).  These three parameters 
are computed by using the data for hits, misses, 
and false alarms for each individual storm type, 
yielding insightful information regarding tornado 
warning skill and tornado warning shortcomings 
with respect to the type of storm that spawns 
them.  It is important to note that our sample size 
consisted of 45 different forecast offices 
geographically located from the Plaines to the Mid-
West to the Southeastern United States.   
     FIGURE 5 summarizes our results regarding 
these forecast parameters.  Overall, tornadoes 
spawned by isolated supercells received the best 
forecast skill ratings, with an over 45% critical 
success index and a less than 50% false alarm 
ratio.  However, the data clearly shows that as 
tornadic storm type became less obvious (an 
isolated supercell is more likely to spawn a 
tornado than a pulse storm), forecast skill became 
progressively worse.  Although convective line-
induced tornadoes had a probability of detection 
slightly higher than that of isolated supercells 
(82%) they also had a significantly lower CSI (~ 
36%) and higher FAR (~ 61%).  This trend 
continued with pulse storms, sporting a lower CSI 
(~ 20%), lower POD (~48%) and higher FAR (~ 
74%).  Non-organized storm tornadoes sported 
the worst CSI (~ 19%) and highest FAR (~ 77%), 
while possessing a slightly higher POD than pulse 
storms (~ 54%). 
     Confidence intervals for these forecast 
parameters were calculated using the statistical 
method of bootstrap tilting (Hjorth 1994).  It was 
found that for isolated supercells, one can say with 
95% confidence that CSI will be at least 50.2%, 
POD will be at least 86.3% and FAR will be at 
least 54.9%.  For convective line storms, one can 
say with 95% confidence that CSI will be at least 
45.1%, POD will be at least 90.4% and FAR will 
be at least 69.6%.  For pulse storms, one can say 
with 95% confidence that CSI will be at least 
27.8%, POD will be at least 59.9% and FAR will 
be at least 81.2%.  Non-organized storms at the 
95% confidence level will have a CSI at least 
33.7%, a POD at least 74.7% and an FAR at least 
87.7%.  Thus, the average values appear to be 
supported by this bootstrapping technique. 
     Further statistics can be done through 
permutation tests (Hjorth 1994) to see if the 
difference between forecast parameters is 
statistically significant.  We can say with 95% 
confidence that forecasters do better (on the order 
of 25% difference in CSI)  when predicting 
tornadoes that come out of convective lines or 
supercells than they do on tornadoes in pulse 
storms or "non-organized" storms.  In addition, 



 
Classified Non-

Organized 
Classified 
Supercell 

Classified 
Line 

Classified 
Pulse Accuracy

Observed Non-Organized: 464 2 2 58 88.20% 
Observed Isolated Supercell: 5 167 16 34 75.20% 

Observed Convective Line: 8 47 122 31 58.70% 
Observed Pulse Storm: 50 13 15 322 80.50% 

Accuracy: 88.00% 72.90% 78.70%  72.40%  
 
TABLE 1. Performance of decision tree based on training data set. 
 
 
 
 

 
Classified Non-

Organized 
Classified 
Supercell 

Classified 
Line 

Classified 
Pulse Accuracy

Observed Non-Organized: 498 0 3 68 87.50% 
Observed Isolated Supercell: 2 82 14 33 62.60% 

Observed Convective Line: 4 28 41 22 43.20% 
Observed Pulse Storm: 57 24 25 168 61.30% 

Accuracy: 88.80% 61.20% 49.40% 57.70%  
 
TABLE 2. Performance of decision tree based on testing data set. 
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FIGURE 5.  Critical success index, probability of detection, and false alarm ratio for tornado warnings broken down by type of storm 



forecasters seem to have better performance (on 
the order of a 9% difference in CSI) on isolated 
supercells than on line storms, but that difference 
is not statistically significant at the 95% confidence 
level. 
     The average lead times for tornadoes also 
illustrate a significant difference between storm 
types. There are two ways to calculate lead times: 
the method utilized by the National Weather 
Service (missed tornado warnings equal zero lead 
time) and calculating lead time based on verified 
warnings only (FIGURE 6).  The National Weather 
Service (NWS) method for tornadic isolated 
supercell average lead time was slightly less than 
17 minutes.  However, if we consider only the hits 
(that is, the confirmed tornado warnings) then lead 
time goes up to almost 20.5 minutes.  For all 
convective line storms, average NWS method lead 
time dropped to just over 15 minutes, but for the 
confirmed warnings it was still a respectable 18.6 
minutes.  All pulse storms calculated by the NWS 
method had average lead times of just over 7.5 
minutes, while the warned pulse storms had 

average lead times of 16 minutes.  Non-organized 
storms performed the worst of the four storm 
types, yielding an average NWS method lead time 
for all of the storms of just over 6 minutes.  The 
non-organized storms that were warned sported a 
lead time of less than 12 minutes.  To verify if this 
data set is large enough to represent all tornado 
warnings, the NWS and hits only method of 
calculating lead times was computed for all storms 
in the set and compared to the average of all 
tornado warning lead times since the introduction 
of the WSR-88D network (early 1990s).  For the 
NWS method, we calculate an average lead time 
of 14.43 minutes, while the average value since 
the early 1990s is 13 minutes (Erickson 2007).  
We calculate an average lead time of 19.37 
minutes using the hits only method, while the 
average value since the early 1990s is 18.5 
minutes (Erickson 2007).  These values are both 
quite close; therefore we conclude this data is 
representative enough to make conclusions for all 
tornado warnings. 
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FIGURE 6.  National Weather Service method of calculating lead times (0 sec lead time on missed warnings) vs. calculating lead 
times based upon the warned storms only, broken down by storm type for tornado warnings 
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FIGURE 7.  Critical success index, probability of detection, and false alarm ratio for severe thunderstorm warnings broken down by 
type of storm 

 
 
c. Severe Thunderstorm Warning Forecast Skill 
Parameters 
 
     FIGURE 7 summarizes our results regarding 
these forecast parameters.  Overall, forecast skill 
parameters for severe thunderstorm warnings 
improved for all storm types over their respective 
tornado warning parameters.  Isolated supercells 
that had a severe thunderstorm warning issued for 
them had the best forecast skill ratings, with an 
over 52% critical success index and a less than 
40% false alarm ratio.  Their probability of 
detection was also a solid 80%.  Convective line 
severe thunderstorm warnings also performed 
well, with a 41% CSI and FAR just below 50%.  
Pulse storms and non-organized storms again 
performed the worst, with pulse storms possessing 
a low CSI (~ 32%), low POD (~ 59%) and highest 
FAR (~ 59%).  Non-organized storms had the 
lowest CSI (~ 31%), lowest POD (~ 54%) and high 
FAR (~ 57%).  Still, these values of forecast skill 
by storm type are still better than their tornado 
warning counterparts. 

     Confidence intervals for these forecast 
parameters were again calculated.  It was found 
that for isolated supercells, one can say with 95% 
confidence that CSI will be at least 55.2%, POD 
will be at least 82.5% and FAR will be at least 
42.2%.  For convective line storms, one can say 
with 95% confidence that CSI will be at least 
44.6%, POD will be at least 72.0% and FAR will 
be at least 52.8%.  For pulse storms, one can say 
with 95% confidence that CSI will be at least 
34.8%, POD will be at least 63.2% and FAR will 
be at least 62.9%.  Non-organized storms at the 
95% confidence level will have a CSI at least 
35.9%, a POD at least 60.3% and an FAR at least 
62.6%.  Again, the average values appear to be 
supported by this bootstrapping technique. 
     Permutation tests were conducted on this data 
as well to calculate its statistical significance.  We 
can say with 95% confidence that forecasters do 
better (on the order of 21% difference in CSI)  
when predicting severe thunderstorms that come 
out of supercells than they do on severe 
thunderstorms in pulse storms or "non-organized" 
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FIGURE 8. National Weather Service method of calculating lead times (0 second lead time on missed warnings) vs. calculating 
lead times based upon the warned storms only, broken down by storm type for severe thunderstorm warnings 

 
 
storms.  They also do better (on the order of 10% 
CSI) when predicting severe thunderstorms that 
come out of  convective line storms than they do 
on pulse or “non-organized” storms.  In addition, 
we can say with 95% confidence that forecasters 
do better (on the order of 11% CSI) when issuing 
severe thunderstorm warnings that come out of 
supercells than they do on severe thunderstorm 
warnings in convective line storms.  This could not 
be said of the tornado warning data (due to the 
much smaller data set).  The difference in CSI 
between pulse and “non-organized” storms is not 
significant at the 95% confidence level. 
     The average lead time for severe thunderstorm 
warnings is also insightful (FIGURE 8).  Once 
again, we calculated lead time by both the NWS 
method and the “hits only” (verified warnings only) 
method.  For isolated supercells, the average lead 
time for a severe thunderstorm by the NWS 
method is 17.47 minutes, while it rises to over 
21.84 minutes with the hits only method.  
Convective line average lead times are also quite 
good, at 14.91 minutes NWS and 21.91 minutes 

“hits only.”  Lead time dropped off for pulse storms 
and non-organized storms, but not as severely as 
in tornado warnings.  That is, pulse storms had an 
NWS method average lead time of 11.24 minutes 
and a verified warning lead time of 19.09 minutes.  
Non-organized storms once again had the lowest 
NWS method average lead time (10.47 minutes), 
but surprisingly had a slightly higher verified 
warnings lead time than pulse storms (19.24 
minutes). 
     The average size of the severe thunderstorm 
warning polygons by storm type is also insightful.  
Isolated supercells had an average warning size of 
about 1,250 square kilometers, while convective 
line storm warnings were larger at about 1,525 
square km.  Both pulse storm warnings and non-
organized storm warnings were smaller than 
isolated supercell and convective line warnings in 
our data set, both at about 1,100 square 
kilometers.   
 
 
 



5. Conclusions 
 

a. Data Interpretation 
 

     Several conclusions can be drawn from the 
analysis of our data.  It is significant that tornadic 
isolated supercell thunderstorms and convective 
line storms sport higher CSI, higher POD, and 
lower FAR than pulse storms and non-organized 
storms.  This makes sense however, since pulse 
storms and non-organized storms do not have 
rotating updrafts (as do isolated supercells or 
embedded supercells in a line of storms), thus 
they are usually not expected to spawn a tornado.  
In fact, many National Weather Service forecast 
offices are unaware of a pulse or non-organized 
storm spawning a tornado until after a trained 
spotter has reported a tornado on the ground.  
Thus, the tornado warning can be much delayed 
and negatively affect the WFO’s respective CSI, 
POD, and FAR scores. 
     Comparison of the tornado warning lead times 
by storm type also yields insightful results.  
Isolated supercells and convective line storms, 
regardless of the method used to calculate 
tornado warning lead times, have the highest lead 
times of any storm type (at least 15 minutes).  This 
makes sense considering that forecasters do 
better recognizing tornadic traits in both isolated 
supercells and convective line storms  Conversely, 
pulse storms and non-organized storms have the 
lowest lead times (below 7.5 minutes), which also 
makes sense considering forecasters have the 
most difficult time predicting tornadoes in storms 
with no rotating updraft.  This difference is 
significant because individual forecast offices 
could potentially report very high CSI, POD, and 
low FAR scores for a certain tornado season, 
when in fact they only received isolated supercells 
and convective line storms for the entire period.  
These storms are statistically easier to issue 
warnings for, thus these forecast score values 
would not be a good representation of the skill 
exhibited by this particular forecast office.  On the 
other hand, a particular forecast office could report 
very low CSI, POD, and high FAR scores for a 
certain tornado season, when in fact they only 
received pulse storms and non-organized storms 
for the entire period.  These storms are statistically 
very difficult to issue warnings for, thus these 
forecast score values would also not be a good 
representation of the skill exhibited by this 
particular forecast office. 
     The severe thunderstorm warning forecast skill 
calculations yield quite similar results to the 
tornado warning skill calculations.  That is, that 

isolated supercell and convective line severe 
thunderstorms sport higher CSI, higher POD, and 
lower FAR scores than severe pulse storms or 
non-organized storms, thus making them 
statistically easier to issue warnings for.  This too 
makes sense, since an isolated supercell or 
convective line is usually much more intense than 
a pulse or non-organized storm, thus forecasters 
may pay more attention to it and issue a severe 
thunderstorm warning for it more easily.  The 
permutation tests confirm (due to a much larger 
data set) the significance of the difference in CSI 
scores (11%) between isolated supercell severe 
thunderstorms and convective line severe 
thunderstorms, which is interesting since this 
difference was only suggestive for the tornado 
warning skill scores.  Forecasters thus statistically 
have the easiest time issuing severe thunderstorm 
warnings for isolated supercells. 
 
b. Limitations 
 
     Although this study has yielded much insight 
into the ability of forecasters to issue timely 
tornado warnings based on the type of storm that 
spawned them, it is possible, but not likely, that 
certain limitations may have affected our results.  
Our sample size included only 263 tornado 
reports, with a total of 532 issued tornado 
warnings; in addition, although the sample size for 
isolated supercells was reasonable (299 storms), 
the number of other storm types may have been 
too low to draw absolute conclusions (89 
convective line storms, 108 pulse storms, and 36 
non-organized storms).  However, the statistical 
tests (bootstrapping and permutation tests) 
indicate that our conclusions are statistically 
significant (at the 95% level) except for those 
differences in skill apparent between supercells 
and convective lines. 
     We do not suspect the same problem exists 
with our severe thunderstorm data due to our 
much larger sample size (1,531 storms, with 2,530 
warnings issued).  All of our data cases were 
selected from tornado outbreaks, which may 
explain why our calculated tornado warning lead 
times are slightly higher than the national average 
(during an outbreak, a forecaster may have an 
easier time issuing a warning since tornadoes 
have already been reported).  Also, although the 
decision tree did a decent job classifying storms, it 
is indeed possible that some storms were 
misclassified, thus slightly modifying our results.  
Even so, since the decision tree was not biased 
towards any particular storm type (See FIGURE 



4), we believe that any misclassifications should 
not introduce any systematic bias into our results. 
 
c. Future Work 
 
     The creation of an automatic classification 
algorithm of storms and the relationship between 
severe weather warnings and storm type provides 
a plethora of options to pursue future work.  The 
most obvious of these is improvement of the 
storm-typing algorithm to incorporate more 
categories of storms.  Storm types such as tropical 
supercells and mini-supercells are particularly 
difficult to warn for, especially in the Southeast 
United States.  Such an improvement to the 
algorithm could probably reduce the false-alarm 
rate in that part of the country.  Range from the 
radar site should also be considered, since many 
storms far away from individual WRS-88D radars 
can be under the beam and not be properly 
detected.  Tornado warning lead time by storm 
type can also be calculated by eliminating 
subsequent warnings.  Since warnings following 
the very first one tend to have lower lead times, it 
may be insightful to calculate lead times based on 
the first warning issued for a particular storm only.  
Population density should also be considered.  
There are many tornadoes that never get reported 
because of a lack of people in the area calling in 
reports to their local WFOs.  More reports can 
significantly improve the CSI, POD, and FAR 
scores of an individual forecast office.  Although 
the goal of this project was not to create storm 
type classification algorithm, it was certainly a 
useful result yielded from our methodology.  This 
algorithm can be used to assist in issuing severe 
weather warnings as an additional forecast tool. 
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