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ABSTRACT 

 
Data assimilation is the process of using past and present data to estimate the current 

synoptic state of a dynamical system. Current data is merged with a previous model forecast or 
“background” field to produce the best estimate of a system’s state called an “analysis”.  For cases 
where the probability distribution of observation and background errors are normally distributed, a 
Kalman filter can be shown to produce the best estimate of a variable and its uncertainty. A type of 
data assimilation system called the Ensemble Kalman Filter (EnKF) approximates the background 
covariance field using only a small ensemble of forecasts. Since a limited number of samples are 
used, many spurious correlations exist between an observation at one point and forecast errors at 
various locations within the model domain. To limit spurious relationships the Local Ensemble 
Transform Kalman filter (LETKF) limits the region considered in a process called “localization”.  But 
a question arises regarding the optimal localization size for analyses within complex model 
domains. Using the Estuarine Coastal Ocean Model (ECOM) coupled with the LETKF, we 
examined correlations between simulated state variables on various locations and depths within a 
domain that spans the New York Harbor region. Distributions of correlation coefficients surrounding 
an analysis point were used to determine the optimal localization domain for each particular 
relationship. Since spurious correlations tend to diminish after 1 to 2 days of simulation, results 
observed during days 3 and 4 of this experiment were taken to be a good estimate of true 
relationships between variables. Given the large amount of dynamical and bathymetric variability 
within this model domain, correlation structures of mixed shapes and sizes were observed. In many 
instances, the parameterized localization domain was either too small or too large to capture the 
actual correlations. Results from this study provide incentive to pursue an automated solution to 
optimal localization within the LETKF/ECOM that tailors a unique localization volume for each 
analysis. If successful this solution can be applied to various other prediction systems that rely on 
ensemble data assimilation. 

_________________________________________________________________ 
 
 
1. Introduction 
 

In situ and remotely sensed observations of 
large-scale geophysical systems, such as the 
earth’s atmosphere and oceans, tend to vary in 
density. Since it is not feasible to capture the true 
synoptic state of these systems at one instant (as 
required by forecast models), past and current 
observations are used in conjunction with a data 
assimilation system (DAS) for estimating the value 
of each state variable at all points in a specified 
model domain.  At regular intervals, a DAS 
produces an “analysis” or statistical estimate of the 
system state at one moment in time. An analysis 
can be used to initialize a dynamical model to 
produce a “forecast” for future times, or empirically 

to study the current synoptic situation. In both 
cases, data assimilation is a necessary step for 
understanding the nature of large complicated 
systems in cases where relatively few 
observations are available. 

In terms of assimilating data for model 
initialization, the skill of any numerical prediction 
system depends on how efficiently observations 
are merged into the system. For cases where the 
model dynamics are linear in nature and where 
probability distributions of observation and 
forecast errors are normally distributed, a Kalman 
filter provided optimal estimates.  Using current 
and past data, the Kalman filter uses the model 
dynamics to evolve the most probable trajectory of 
a system state and error (Kalman, 1960; Kalman 



and Bucy, 1961). A previous model forecast or 
“background” is taken to be a good estimate or 
“first guess” for the current synoptic situation. An 
analysis is then created by minimizing a cost 
function with respect to a vector containing the 
system state. This function depends on the 
background vector, new observations, and error 
covariance matrices which represent the 
uncertainty for both of these vectors. The 
minimizing solution becomes the new analysis.  A 
numerical model uses the current analysis to 
produce a forecast for the next time step, which is 
taken to be the new background field. The 
background error statistics are calculated and the 
data assimilation process is repeated with new 
observations and a new background. In general, 
the performance of any DAS depends on how well 
the current state vector and its error are estimated 
(Daley, 1991; Kalnay, 2002).   

Since Kalman filtering is computationally 
expensive and only applies to dynamically linear 
systems, many variations of this DAS have been 
developed. One approach involves using an 
ensemble of analysis to produce a set of new 
forecasts (Evensen, 1994). For this case, the 
mean is taken to be the background; with an error 
covariance matrix approximated using the 
ensembles. Ott et al. (2004) and Hunt et al. (2007) 
describe the development of a portable, more 
efficient type of ensemble Kalman filter (EnKF) 
called the Local Ensemble Transform Kalman filter 
(LETKF) that nearly matches the EnKF in 
accuracy, but with a much improved run time. 

Ensemble data assimilation provides a good 
way of determining the background error 
correlations. Since distant correlations are 
expected to be relatively insignificant, the LETKF 
limits the data region considered in a process 
called localization. That is only observations from 
a set localization volume are used (Ott et al., 
2004).  

Questions still remain concerning the 
localization size for state variables on each unique 
grid point: How strong is the relationship between 
the errors of a single variable estimation and all 
other variables at different points and levels 
throughout a model domain? How should the 
localization volume be tuned to best represent 
distinctive relationships?  

To answer these questions, we ran a 
simulation experiment using the Estuarine Coastal 
Ocean Model (ECOM) coupled with the LETKF in 
the New York Harbor region. Results of this 
research suggest that large variability exists 
between state variable relationships throughout 
the model domain. Distributions of correlation 

coefficients (r) between a single forecasted or 
analyzed point variable and the remaining field 
were used to represent such relationships. 
Overall, correlation structures tended to depend 
on variable, location, and time. To remove 
spurious correlations in remote locations, which 
can be regarded as noise, the results were 
averaged over various time spans.  

This particular study is a small component of a 
much larger initiative to improve the accuracy and 
efficiency of the LETKF via better localization. The 
ultimate goal is to automate the process of 
localization within the ECOM/LETKF framework. In 
time, this method can be applied to other 
prediction systems that use ensemble-based DAS. 

In Section 2, the methodology for this 
experiment is described. Details regarding the 
ECOM/LETKF domain are provided, along with 
the steps taken to examine state variable 
relationships and remove spurious correlations. 
The experiment results are explained in Section 3, 
including an overview of correlation structure 
variability with respect to variable, location and 
time. A summary and discussion on future 
research are provided in Sections 4 and 5. 

 
2. Methodology 

 
Originally developed for atmospheric 

applications, the LETKF has been slightly modified 
for use in an oceanic environment with the 
Estuarine Coastal Ocean Model (for details see 
Hoffman et al., 2008). Previous improvements in 
modeling and data collection in the New York 
Harbor region have lead to the creation of the New 
York Harbor Observing and Prediction System 
(NYHOPS) (Blumberg et al. 1999; Bruno et al. 
2006). Hoffman et al. (2008) have adapted the 
LETKF to work efficiently with the ECOM in the 
NYHOPS, proving it to be a useful test bed for 
advanced oceanic DA research. Using the same 
ECOM/LETKF configuration in the NYHOPS 
domain, we explored the localization component of 
the LETKF. 
 
a. Experiment Description 

 
 The ECOM/LETKF simulation was run for 4 

days, producing 32 forecasts and analyses at 3 
hour intervals. Most of the results we present from 
this study were obtained using an ensemble size 
(k) of 64, but for comparison we also examined 
results from an experiment that was run using k = 
16. Water currents (u and v), salinity (S) and 
temperature (T) were predicted, along with surface 
water level (h). The current parameterization of the  



                      
Figure 1. Bathymetry (m) of NYHOPS domain in grid view, with all major geographic features labeled. 
 
LETKF localization volume is set at 2 horizontal 
grid lengths in both directions from the analysis 
point, and 1 to 2 grid lengths in the vertical.  

The NYHOPS domain (Fig 1) has complex, 
irregular geometry including the New York 
Harbor and neighboring inland water features, 
such as the Hudson River, East River, Long 
Island Sound and Hudson Bight. The ECOM 
uses a 59x94 computational grid, with a 
resolution varying from 500 m in the rivers and 
estuaries to 42 km in the open ocean. Since 
bathymetry changes substantially throughout the 

domain, the ECOM uses vertical !-coordinates 

instead of z-coordinates, where ! is defined as 
the ratio between the depth and total height of a 
water column. Ten equally spaced levels are 

used, ranging from ! = 0 at the water surface to 

! = -1 at the ocean floor, with a vertical 
resolution that varies from about 150 m to less 
than 2 m, depending on bathymetry. 
 
b. Variable Relationships 

 
The NYHOPS domain is ideal for this 

particular type of study, where the relationships 
between variables at an assortment of locations 
in a diverse model domain are expected to vary 
substantially. To begin, each variable at selected 
locations is correlated with like variables at all 
grid points and levels in the model domain. A 
relationship is considered to be significant for |r| 

> 0.6. An example of such a distribution is 
shown in Fig. 2a and 2b for the last time step of 
the simulation where the analysis ensemble 
correlations for S on point 45, 15, level 8 is 
illustrated. In this case for a location in the open 
ocean region, correlations are strong at grid 
points nearest to the site of interest and 
gradually taper off at distances further away. 
This occurrence is observed for most strong 
relationships. At the same location and depth, 
the analysis ensemble correlations for T are 
calculated (Fig. 2c and 2d) and a more compact 
horizontal correlation field is produced. In a 
similar manner, analysis ensemble correlations 
for u are shown in Fig. 2e and 2f with an even 
smaller distribution of significant correlations. A 
correlation structure for v-v relationships is not 
provided since it strongly resembles the 
distribution of u-u correlations at this location 
and depth. The grid point for these cases was 
chosen rather arbitrarily. What is important in 
this example is the fact that a significant 
difference in correlation structure exists for each 
variable at the same location and depth. 

The above relationships were calculated for 
both ECOM analyses and backgrounds 
(forecasts) then subtracted for comparison. A 
large difference exists between the two 
distributions at several isolated locations for the 
first time step. Some of the values range from 
+/- 0.6 in regions where the correlation

NYHOPS Domain Bathymetry (m) 
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Figure 2. The horizontal distribution of correlation between the point marked by ‘x’, and the remaining 
model domain are illustrated for S (a), T (c), and u (e) for the last time step of the simulation. Regions 
which are colored red represent large positive correlations, where blue shades indicate strong negative 
correlations and a white contour is plotted for |r| = 0.6. The area of interest for this case is at point 45, 15, 
level 8 in the NYHOPS domain; a location in the open ocean region off of the New York coast. To view 
the vertical correlation structure, cross sections are taken along the y-axis, extending from the coast to a 
location further out into the ocean, for S (b), T (d), and u (f).  



coefficients are of moderate value. These 
differences quickly approach zero as the 
simulation is extended to more time steps. By 
the eighth time step (at the end of day 1) the two 
results have converged and a strong agreement 
exists between analysis and background 
correlations.  
 
c. Removing Spurious Correlations 

 
To determine whether or not the observed 

relationships are real, we experimented with 
several methods that we expected would 
remove distant spurious correlations. The 
ECOM/LETKF simulation was first run with k = 
16 ensemble members. This relatively small 
ensemble produced a solid correlation structure 
around key points, but contained several remote 
regions of anomalously high value. The 
experiment was then rerun using a much larger 
ensemble size of k = 64 and the same variable 
relationships were investigated. The resulting 
correlation structures were of a slightly more 
compact size and shape compared to the prior 
experiment, but with far less remote correlations 
(Fig. 3). Despite the fact that the k = 16 
experiment managed to locate the approximate 
correlation distribution around most points of 
interest, data obtained from the k = 64 
experiment is used for the remainder of this 
study to obtain smoother results and for 
resolving complicated relationships, such as 
cross-correlations between two variables. 

Over time, LETKF analyses converge 
towards what is accepted to be the true system 
state (Hoffman et al. 2008). In a similar manner, 
spurious correlations diminished with time. To 
illustrate these results, Fig. 4a shows the 
analysis ensemble correlation for S on point 38, 
15, level 5 for the first four time steps. Fig. 4b 
contains the same distribution for the last four 
time steps (or the last 12 hours of day 4). It is 
evident that the correlation field changes 
dramatically early in the simulation period, but 
very little during day four. By observing several 
relationships over all 32 time steps it is clear that 
most remote correlations disappear by the end 
of day 2 and very little change is seen in the 
estimated correlation structure during days 3 
and 4. 

Going one step further to remove spurious 
correlations, the mean of results calculated over 
various time steps was examined. As mentioned 
in the previous paragraph, little change in the 
observed relationships is noticed by day 3; 
therefore, correlations averaged over the last 

two days of the experiment provide the most 
representative localization volume for each 
relationship.  

 
3. Results 

 
This study investigated the extent to which 

the analysis of a single point variable correlates 
with all other variables in a three-dimensional 
model domain. After viewing many diverse 
variable to variable relationships, it is apparent 
that each correlation is unique in its own regard. 
For some cases, state variables that were 
initially thought to be strongly (or weakly) linked 
were indeed found to be weak (or strong). In all 
cases, the correlation structure differed greatly 
depending on location and variable type. 
 
a. Unexpected Relationships 
 

Before performing this study, there was 
reason to believe that a strong connection exists 
between the water level and vertical mean of the 
flow field below the surface. This premise was 
tested on several water columns, including a 
particularly interesting location near Coney 
Island at the entry to the Harbor (Fig. 5). Despite 
the ensemble correlations on the first time step 
being rather strong and widespread, these 
relationships quickly diminish by day 2. Since 
the result fails to persist throughout the entire 
simulation, a significant relationship between the 
two values cannot be inferred.  

Another interesting outcome involves the 
analysis of T and S in the New York Bight region 
of the NYHOPS domain. As an example, the 
analysis ensemble cross-correlations for T and 
S at point 45, 15, level 8 were calculated for all 
32 time steps. After 4 days of simulations, broad 
regions of moderate to significant correlations in 
regions displaced from the point of interest 
remained. As described in the methodology 
section, we averaged the correlations over day 3 
and 4 of the experiment to further smooth the 
result and remove spurious correlations.  Fig. 6 
illustrates the unique correlations structure for 
this relationship. 
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Figure 3. Ensemble correlations for S on point 45, 15, level 8 (marked by the “x”) are compared for k = 16 
(a) and  k = 64 (c) at the last time step. Vertical cross sections are taken through the correlation structure 
as described in Fig 2 for (b) and (d). Notice the large amount of remote correlations for the k = 16 case (a 
and b) in comparison to k = 64 (c and d). 
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Figure 4. The evolution of a sample correlation field over time. For this example, ensemble correlations 
for S on grid point 38, 15, level 5 (marked by “x”) are illustrated. Correlations are shown for the first half of 
day 1 (a) and last half of day 4 (b). Notice how remote correlations quickly diminish after the first 4 time 
steps (a) and a persistent correlation structure emerges around the x by the end of the experiment (b). 



      a  Time step 1 (day 1)      b  Time step 16 (day 2) 

 
Figure 5. Vertical means of ensemble cross-correlations for h and the norm of u and v at grid point 20, 30 
(located near Coney Island) are shown for the first and sixteenth time step. The relationship is quite 
strong at the first time step (a), but diminishes greatly by the end of day 2 (b). 
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Figure 6. The ensemble cross-correlations for S and T on grid point 45, 15, level 8 (marked by “x”) are 
averaged over days 3 and 4 of the simulation. The horizontal correlation field is provided (a), along with a 
vertical cross section of the correlation (b), represented by a line passing diagonally through the open 
ocean region. 



b. Potential for Improving Localization 
 

The large amount of variability associated 
with correlation fields for like variables is the 
fundamental result of this study. For instance: 
significant T to T and S to S correlations tend to 
be more widespread than relationships involving 
components of current; therefore, a larger 
localization volume should be used. Likewise for 
water level: since significant h to h correlations 
cover an area that encompasses large fractions 
of the model domain (Fig. 7), a substantially 
larger localization region would be necessary to 
capture highly correlated observations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. An example horizontal ensemble 
correlation for h (marked by “x”) at point 25, 20 
averaged over days 3 and 4 of the simulation.  
 

The above relationships often differ greatly 
for various locations within the NYHOPS 
domain. Correlation structures associated with 
grid points located in the Hudson River tend to 
be relatively compact. For example, 
relationships involving u and v in this region 
diminish greatly by day 4 of the experiment –to 
the point where only correlations on the analysis 
point and one or two nearby grid points are 
significant. The dynamics of this region (i.e. 
shallow, fast moving water) is most likely what 
causes these relationships to fade. On the other 
side of the spectrum, correlations at points 
within small bay regions of the model domain 
are rather large.  

Cross-correlations between variables are 
much more complicated. For nearly all regions 

within the model domain, the analysis ensemble 
cross-correlations between T and S at an 
analysis point is quite minimal. When the same 
relationship is viewed for a point in vast open 
water regions such as the New York Bight, the 
cross-correlation structure is much larger and 
displaced slightly from the key analysis grid 
point (Fig. 6). The same phenomenon is present 
within the Long Island Sound and along coastal 
regions.  
 
4. Summary 
 
 Correlation coefficients were used in this 
experiment to study relationships between like 
and unlike variables within the NYHOPS 
domain. Many spurious correlations disappear 
by the end of day 2 for simulated results, 
providing good estimates of the true correlation 
structure at time steps during and after day 3. 
Results from the final two days of the 
experiment (days 3 and 4) were averaged to 
approximate the typical correlation structures 
associated with many relationships throughout 
the model domain. Values of |r| > 0.6 were taken 
to be significant. This criterion helped resolve 
the horizontal and vertical extent of the ideal 
localization volume for each relationship. 
 These results shed light on the large amount 
of variability associated with analysis 
correlations in a diverse environment 
encompassing the New York Harbor and 
adjacent littoral regions. Surprising cross-
correlations (or lack of correlation) were also 
discovered (Fig. 5 and 6).  The current NYHOPS 
LETKF localization is set at 2 horizontal grid 
distances and 1 to 2 vertical levels, and appears 
to be deficient for many cases. The accuracy 
and efficiency of this prediction system can 
potentially be improved through larger 
localization volumes for variable analyses with 
strong relationships (S, T, h, and calm water 
regions), and smaller volumes for cases 
involving compact correlation structures (u, v, 
and highly variable flow regions). 
 
5. Discussion 
 
 Using disparate and noisy data, ensemble-
based DAS perform very well for nonlinear 
dynamical systems such as the earth’s 
atmosphere or in this case an ocean system. 
Since Kalman filtering is too computationally 
expensive for operational use in large chaotic 
environments, solutions involving a localization 



domain were developed (Ott et al. 2004; Hunt et 
al. 2007). This study is part of a much larger 
plan to improve localization within the 
LETKF/ECOM framework and possibly other 
prediction systems that use ensemble DAS.  
 Results from this experiment reveal that 
parameterized localization volumes in current 
use inadequately represent the correlation 
structure for many variable relationships within 
the NYHOPS. Since we found a wide variability 
in correlation structures, it follows that the 
correct localization should also be variable. 
Throughout the course of this project, we found 
the optimal localization region for several state 
variable analyses on various locations within the 
NYHOPS domain. Improvements in the 
performance of this prediction system should 
result from an automated localization process; 
meaning more or less observations for individual 
analyses can be used, depending on correlation 
structure. If successful, this method can be 
applied to a variety of other applications, 
including non-traditional variables where 
correlation distributions are too complicated to 
resolve with set localization domains. 
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