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ABSTRACT 

 
 

 Weather derivatives are usually priced by analyzing the climatologic data of an underlying 
weather index. This research proves when using temperature as an underlying weather index, 
climatology was not fully representative of future outcomes. Weather derivative contracts based on 
temperature are measured by degree days, which are a metric of energy consumption. Previous research 
attempted to develop techniques to model degree days, these techniques were based on invalid 
statistical assumptions and lacked robustness. Due to the fact that degree days are an aggregate monthly 
metric and path dependent, it was important to model the complete behavior of a time series by 
simulating the daily mean temperature. 
 This research provides an in depth statistical analysis of the daily mean temperature time series 
for eighteen cities from the Chicago Mercantile Exchange (CME). The residuals, which represented the 
difference between the observed data and trend, were used to develop two models to simulate a possible 
temperature time series for 2007. A distribution of ten thousand possible outcomes were created for each 
model, then analyzed against the climatologic data sets. Ultimately, this research exhibits that statistics 
extracted from the analysis of the residuals could be simulated to produce realistic outcomes of degree 
days for weather derivative contracts. 

 
 
   

.1. INTRODUCTION  
 
Weather derivatives allow businesses and 

organizations to protect themselves against 
unfortunate weather fluctuations. Weather 
fluctuations can be categorized as either 
catastrophic or non-catastrophic events. Although 
weather derivatives are a form of insurance, they 
protect against non-catastrophic weather events. 
For example, a company may not suffer tangible 
damage (i.e. property damage) from a non-
catastrophic weather event, but if a businesses' 
livelihood relies upon consistent weather, a long 
period of undesired conditions could severely 
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damage its revenue. Insurance policies on the 
other hand, protect against catastrophic weather 
events such as hurricanes and tornadoes, in which 
home and property damage is more likely. 
Weather derivatives allow businesses to mitigate 
weather loss damagers by referencing weather 
observations. By comparison, insurance contracts 
require businesses to prove weather related 
damages. 

The first weather derivative transaction in 
the United States occurred during the 1997-1998 
winter season, collectively one of the most 
significant El Nino seasons (Mraoua et al, 2005). 
Since their introduction into the Chicago 
Mercantile Exchange (CME) in 1999, these 
financial derivative contracts have been on the rise 
ever since. The constellation of market makers 
and market participants today offer the weather 
market greater depth, breadth and financial 
security than ever. Its numbers include several of 
the strongest financial institutions on the globe. 
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(WRMA, 2006) 
Due to the fact that weather events and 

energy prices have always been highly correlated, 
the potential for weather derivatives was first 
discovered by energy companies. Today, interest 
has grown outside of the energy market and into 
the leisure and agricultural markets. Companies 
who set pricing for weather derivatives rely on the 
accuracy of the weather data. 

Weather derivative contracts are typically 
structured as swaps, futures, and call-put options 
based upon different underlying weather indices 
(Alaton, 2003).  All contracts traded on the CME 
are based off of the data collected from official 
weather stations identified by the CME. The CME 
has structured contracts that trade on 
accumulated degree days for time periods, 
ranging from months to seasonal strips, written for 
the eighteen stations traded on the exchange. The 
market participants collectively determine the 
strike location for the HDD and CDD contracts, for 
which the CME has prescribed a $20.00 per 
degree day tick size.  The participants may buy 
and sell as many contracts as required to cover 
their temperature exposure. 

When using temperature as the underlying 
index in weather derivative contracts, temperature 
is measured by degree days. Degree days are an 
aggregate monthly metric of energy consumption, 
and are calculated with the daily mean 
temperature. Equation 1 shows how the daily 
mean temperature is calculated by averaging the 
maximum and minimum daily temperature of a 
day. Equation 2 exhibits how each day's 
calculated daily mean temperature is then 
differenced against a reference temperature (18°C 
or 65°F). Equation 3 is lastly the summation of 
these degree days are than taken for each month. 
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Heating and cooling degree days simply 

represent the number of degrees that the 
temperature deviates from a reference 
temperature. This is useful for energy companies 
because if the daily mean temperature is less than 
a reference temperature, than energy is more 
likely to be used for heating, and vice versa. 

Several studies have been conducted on 
the pricing methodology behind weather derivative 
contracts. Alaton et al. developed a pricing model 
for weather derivatives with payouts depending on 
temperature for Stockholm, Sweden. Another 
study conducted by Mraoua et al. developed a 
pricing model for Casablanca, Morocco. Only one 
of these two studies researched the possible time 
dependencies in the residuals. Most importantly, 
the previous research did not include a statistical 
test for normality, and the authors admitted that 
the empirical frequency of small temperature 
differences were higher than predicted by the fitted 
normal distribution 

Referencing previous research, this paper 
will focus on an improved daily mean temperature 
model for each of the eighteen cities selected 
using historical data from 1997 to 2006 from the 
Chicago Mercantile Exchange. 
 
2. DATA AND METHODS  
 
2.1 Data 
 

Ten years of surface temperature data 
were collected (EarthSat, 2009). The surface data 
were composed of daily observations that were 
taken from locations for which CME contracts 
existed. These daily observations contained the 
maximum, minimum, and mean temperature for 
each day, along with the corresponding heating 
and cooling degree days. 
 
2.2 Methodology 
 
 Using the Interactive Data Language 
(IDL), the daily mean temperatures were parsed. 
These daily mean temperatures were then plotted. 
A linear fit was first applied to the raw daily mean 
temperature time series and then removed, 
leaving a time series with no general linear trend. 
Figure 1 is a plot of the daily mean temperature 
time series from Logan International Airport in 
Boston, MA with the corresponding linear trend. 
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Figure 1: Boston Daily Mean Temperature 1997 to 2006 with 
linear trend 

 
With the trend removed from the original 

time series of daily mean temperature, a discrete 
Fourier transformation was performed, separating 
the sequence into a summation of sin and cosine 
waves. After a spectrum was calculated with the 
frequencies, a power spectrum was plotted. With a 
frequency of one cycle per year, the largest signal 
was determined, which represented the seasonal 
signal.  A mask was then applied to the power 
spectrum. The mask was a threshold used to set 
all the lower signals to zero, so only the seasonal 
signal would remain. Figure 2 is a plot of the 
power spectrum of the daily mean temperature for 
Logan International in Boston, MA with the 
determined mask threshold.  
 

 
Figure 2: Boston Daily Mean Temperature Power Spectrum 

 
Figure 3 is a plot of the product of an 

inverse Fourier Transformation from the masked 
time series. This signal with no noise represents 
the seasonal mean temperature signal. 
 

 
Figure 3: Boston Seasonal Mean Temperature 

 
 The intermediate residuals were then 
calculated by differencing the observed daily mean 
temperature from the corresponding seasonal 
mean time series. A pseudo variance was 
calculated by squaring the intermediate residuals. 
A discrete Fourier transformation was then 
performed on the pseudo variance, breaking the 
signal into a summation of sin and cosine waves. 
After a spectrum was calculated with these 
frequencies, a power spectrum was plotted. Figure 
4 is a plot of the power spectrum. With a 
frequency of one cycle per year, the largest signal 
was determined, and then a mask was applied.  
     

     
Figure 4: Boston Daily Mean Temperature Variance  

Power Spectrum 
 
 
Figure 5 is the product, which represents 

an estimate of the daily mean temperature 
standard deviation. The raw residuals were then 
calculated by dividing the intermediate residuals 
by the estimated standard deviation of the daily 
mean temperature. Figure 6 is a plot of the 
residuals, which represents the difference 
between the observed index and the trend. This 
process was repeated for all eighteen cities. 
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Figure 5: Boston Seasonal Variance 

 

 
Figure 6: Boston Daily Temperature Residuals 

 
2.3 Distribution Tests 
 

In order to create the most realistic daily 
mean temperature model for each city, the 
distribution of the raw residuals had to be 
determined. Previous research relied on a visual 
representation of the data, but for this research a 
more in depth was in order. The statistical 
moments were calculated for each city using IDL. 
Table 1 is an example of the statistical moments 
for Boston. The residuals were then plotted in 
normalized histograms with an overlaid normal 
curve Figure 7, and against a normal distribution in 
a QQ plot Figure 8.  

 
 

Table 1: Statistical Moments 
City Mean Standard 

Deviation 
Skewness Kurtosis 

Boston 0.00284524 1.57218 0.135301 0.0161614 
 
 

 

 
Figure 7: Boston Residual Histogram with Normal  

Curve 
 

 
Figure 8: Boston Residual QQ Plot 

 
After producing the statistical moments 

and the two other plots, the residuals were put 
through three tests for normality. The Lilliefor, 
Jarque-Bera, and Anderson-Darling tests were 
calculated at 95% confidence. The results for 
Boston, in which the null was a normal distribution 
and the alternative was a non-normal distribution, 
are given in Table 2. These steps were repeated 
for all eighteen cities. 
 

Table 2: Tests of Normality 
Test Lilliefor Jarque-Bera Anderson-Darling 

Boston Reject the null Reject the null Reject the null 
 
 
 
2.3 Models 
 
 After performing a thorough statistical 
analysis of the raw residuals, two models were 
created. Both models were derived from a basic 
autoregressive model with a lag of five days. The 
coefficients for each model were determined from 
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an autocorrelation function. The autocorrelation 
function was calculated for each day of the year. 
The coefficients for each day of the ten year data 
set were then summed, and averaged.  After 
determining the coefficients, the observed raw 
residuals were broken into the four climatologic 
seasons (i.e. DJF, MAM, JJA, and SON).  
 

     ( 4 ) 
 

Equation 4 was the equation used to 
produce each model. ε represents the  residual 
being simulated at time step t, and α represents 
the autocorrelation coefficient. β represents the 
previous randomly selected residuals at each time 
step, respectively.  

Lastly, in order to simulate one year’s 
worth of daily mean temperature, the last four 
observed daily mean temperature values in 
December 2006 were used to initiate the 
simulation. As shown in Figure 9, observed 
residuals were selected randomly from the 
corresponding climatologic season with some 
memory of the previous residuals.  

 
 
 

 
Figure 9: AR(5) Observed Residuals 

 
As shown in Figure 10, the second model 

had many of the same characteristics as the first, 
except instead of selecting randomly from the 
corresponding observed climatologic season, the 
residuals were selected from a normal distribution.  

 

 
Figure 10: AR(5) Normal Distribution 

 
Each model was then iterated ten 

thousand times, to build a large distribution of 
possible outcomes for 2007. Using a standard 
reference temperature of 18°C or 65°F degrees 
Fahrenheit, the heating and cooling degree days 
were calculated for each month.  

Using IDL, the degree day data was 
plotted for each month in a histogram to evaluate 
the distribution of total degree days. Lastly, in 
order to properly compare the simulated data 
degree days against the historical data, a 
convolution was applied with a Gaussian curve to 
the histogram of the historic data. This process 
was repeated for all eighteen cities. 
  
 
3.  RESULTS 
 
 After reviewing the normalized histograms 
and QQ plots it was very difficult to visually 
determine whether a city was from a normal 
distribution. The majority of the normalized 
histograms had a great deal of action on the tails, 
and didn’t appear to be from a normal distribution. 
The QQ plots had similar attributes, but additional 
information was still necessary. The results from 
the three tests of normality were most conclusive. 
Chicago was the only city, out of a group of 
eighteen with residuals from a normal distribution. 
  In order to properly evaluate each model, 
a city with residuals from a non-normal distribution 
was selected. Boston was selected as the non-
normal city because it, in fact, possesses residuals 
that do not belong to a normal population 
according to the tests applied in section 2. Below, 
Figures 11-15 are samples of each model’s 
simulation for Boston and Chicago. 
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The black sinusoidal line represents the seasonal mean 

temperature for each city. The light blue diamonds represent 
the observed daily mean temperatures from the previous year. 

The purple line represents the simulated daily mean 
temperature data from each model. 

Figure 11: AR(5) Boston Residuals 
 

 
The black sinusoidal line represents the seasonal mean 

temperature for each city. The light blue diamonds represent 
the observed daily mean temperatures from the previous year. 

The purple line represents the simulated daily mean 
temperature data from each model. 

 
Figure 12: AR(5) Boston Normal Distribution 

 
The black sinusoidal line represents the seasonal mean 

temperature for each city. The light blue diamonds represent 
the observed daily mean temperatures from the previous year. 

The purple line represents the simulated daily mean 
temperature data from each model. 

 
Figure 13: AR(5) Chicago Residuals 

 

 
The black sinusoidal line represents the seasonal mean 

temperature for each city. The light blue diamonds represent 
the observed daily mean temperatures from the previous year. 

The purple line represents the simulated daily mean 
temperature data from each model. 

 
Figure 14: Chicago AR (5) Normal Distribution 

 
 Intuitively, each city would have more 
realistic outcomes with the corresponding model 
that selected from their distribution. Although both 
models were run for each city, the remainder of 
this research assumed that climatologic data of 
Boston would be compared with the model that 
used the observed residuals, and Chicago would 
use the normal distribution.  

Using the climatologic data, the heating 
degree days for January were calculated for each 
city. Figures 15 and 16 are histograms of the 
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climatologic data of the heating degree days for 
Boston and Chicago. 
 

 
Figure 15: Boston January HDD 1997 to 2006 

 

 
Figure 16: Chicago Heating Degree Days 1997 to 

2006 
  

As shown in Figures 15 and 16, the ten 
year data set had insufficient number of years to 
produce a histogram that resembled a normal 
curve. A convolution with a Gaussian curve was 
applied to the historic data histogram for Boston 
and Chicago.  
 

 

 
Figure 17: Boston Kernel Average and Simulated 

Heating Degree Days 
 
 

 

 
Figure 18: Chicago Kernel Average and Simulated 

Heating Degree Days 
 
 Due to the fact that the Gaussian curve 
had a large half width, the kernel estimation 
produced a much wider distribution than the 
simulated data. The mean and mode of each plot 
provided valuable information. In each case, the 
simulated data had a mode that was less than the 
historic data.  The plots were constructed in order 
to assess where the historic data would place the 
maximum likelihood of HDD verses where the 
maximum likelihood occurs for the simulation. 
. 
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4. CONCLUSION 
 
 Since weather derivatives are path 
dependent, taking the straight average of the 
climatologic heating and cooling degree days will 
not yield representative outcomes for the next 
year. This research attempts to simulate the best 
representation of next year’s outcomes. 

After removing the seasonality from the 
residuals and performing a thorough statistical 
analysis of the residuals, it was determined that 
the residuals cannot be assumed to be from a 
normal distribution for all cities. The normalized 
histograms and QQ Plots provided visual evidence 
that there was a great deal of action on the wings 
of the distributions.  

The previous figures showed that the 
January 2007 heating degree day simulations, 
positioned the simulated distribution within the 
historic kernel density curve, but depicted a 
warmer winter than the historic data. This is very 
valuable because in weather derivative contracts, 
for every degree day off, the payout can increase 
very rapidly, and having this information in 
advance can prove very beneficial. 
 Future work, will involve additional metrics 
and techniques that will address the validity of the 
assumptions and statics used in these models. 
Additional, more robust models and pricing 
methods will be explored. 
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