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ABSTRACT 

 
The mPING app allows the public citizen to submit reports of the weather occurring at their location 

from anywhere on the globe. This study uses precipitation type reports made through mPING in the 
continental United States to verify precipitation type forecasts of operational numerical models. The 
models evaluated are the North American Mesoscale (NAM) model, the Global Forecast System (GFS), 
and the Rapid Refresh (RAP) model.  Strengths and weaknesses of each model’s forecast are 
investigated for freezing rain, ice pellets, rain, and snow.  The Heidke and Peirce skills scores are used 
predominantly, along with other performance measures.  Overall, the models show less skill in the rare 
events of freezing rain and ice pellets, while overcompensating those precipitation types for rain or snow. 
    _____________________________ 
 
 

1. INTRODUCTION1 

Precipitation type during winter weather 
affects society and the lives of individual people. 
Travel at the ground and in the sky becomes 
difficult.  Infrastructure and commerce are also 
greatly affected. Studies have shown that winter 
weather has significant impacts. A total of 87 
catastrophic freezing rainstorms occurred between 
1949 and 2000, resulting in losses totaling $16.3 
billion (Changnon 2003). Accurate forecasts of 
mixed precipitation types can potentially reduce 
the cost of winter storms by allowing for better 
advanced preparation.  
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Precipitation type forecasting is always a 
challenge for meteorologists. The microphysical 
processes that determine precipitation type are 
well understood, but the forecasting of 
precipitation type is lacking in skill.  Small 
variations in atmospheric parameters affect 
thermodynamic processes that can result in 
changes in the precipitation type at the surface 
(Lackmann 2011). 

To help verify forecasted precipitation type, 
data was collected through the meteorological 
Phenomena Identification Near Ground (mPING) 
Project. The mPING app was introduced in 
December 2012 (Elmore et al. 2013) and allows 
the public citizen to identify precipitation type at 
their current time and location anywhere in the 
continental United States.  This study uses mPING 
reports from two winter weather events.   

The operational numerical models analyzed 
in this study were the Rapid Refresh (RAP) model, 
North American Mesoscale Model(NAM), and the 
Global Forecasting System(GFS).  Each model’s 
forecast ability of precipitation type during the two 
events was analyzed using primarily the Peirce 
and Heidke skill scores. Resampling techniques 
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are used to place bounds on the accuracy of the 
scores and to determine the statistical significance 
of difference between scores from various models 
and across two lead times. Other performance 
measures are also used.  

The results of this study are useful for 
forecasters and anyone else affected by winter 
weather events.  The model’s ability to predict 
different precipitation types are investigated to 
understand the strengths and weaknesses a 
model might have. 

2. DATA AND METHODS 
 
a. mPING 

 
Observations used to verify the model’s 

forecast were collected through mPING reports for 
two time periods: 8 February 2013, 1200 UTC-
0000 UTC and 21-22 February 2013, 1200 UTC-
0600 UTC. These events were specifically chosen 
due to the large number of reports and the variety 
of precipitation types observed. This study is 
focusing on the model’s ability to forecast different 
precipitation types including freezing rain and ice 
pellets, so events containing only rain or snow 
were of lesser interest.   

At the time of data collection, there were 13 
different precipitation types for an mPING 
observer to report. These were: drizzle, freezing 
drizzle, rain, freezing rain, ice pellets/sleet, 
graupel, wet snow, snow, mixed rain and snow, 
mixed rain and ice pellets, mixed ice pellets and 
snow, hail, and none.  “Test” is also a report option 
so users can see how the app works and to keep 
people from submitting false reports. Reports of 
“none,” while available and used commonly were 
not investigated during this study.  The goal of this 
project is to see how well the models forecast 
different precipitation types when both the model 
predicts precipitation and the observer reports 
precipitation, not if the model did or did not 
forecast precipitation.   

In order to consolidate the data for analysis, 
the observations are aggregated into four 
categories.  The four categories are: rain, snow, 
freezing rain, and ice pellets. If mixes were 
reported the report was collapsed to the 
precipitation type that gave better consistency or 
agreement among the area of precipitation. For 
example, a report of rain and ice pellets is 
collapsed to ice pellets. Furthermore, the ability of 
the model to forecast ice pellets has a greater 
impact on infrastructure and travel.  

 
b. Numerical Models	
  

	
  
Precipitation type forecast verification is 

performed on three operational numerical models, 
which are: the RAP, GFS, and NAM.  
Comparisons between model forecasts use the 
skill scores from both the three and six hour 
forecasts.  In this study, the RAP model was 
broken down into two different variations, identified 
as RAP1 and RAP2. The forecasts for 
precipitation type are not mutually exclusive which 
means; two precipitation types can be forecast 
valid at the same time (Benjamin 2013).  If the 
mixed precipitation type forecasts were the same 
as possible mPING observations they were 
collapsed the same as the observations were.  
However, there is a case when the model 
forecasts freezing rain and snow, implying a mix of 
the two.  Because there is no mix of freezing rain 
and snow available for an mPING report, and due 
to the fact that the combination of the two types is 
rare, such reports are collapsed to both snow and 
freezing rain.  This created two different variations 
of the RAP.  The RAP1 is the model with those 
forecasts collapsed to snow. RAP2 is the model 
with those forecasts collapsed to freezing rain. 
The RAP is run hourly and uses a complex cloud 
scheme that uses mixing ratios, fall rates, and 
precipitation rate to predict precipitation type.	
  

The NAM is run four times a day at 0000 
UTC, 0600 UTC, 1200 UTC, and 1800 UTC.  The 
NAM post processes precipitation type using five 
algorithms.  The five algorithms are the Baldwin-
Schichtel, Ramer, Bourgouin, explicit 
microphysics, and Revised Baldwin (UCAR 2011).  
The predominant precipitation type from the 
ensemble of algorithms is forecasted.	
  
  The GFS is also run four times a day at 
the same times as the NAM and uses an 
ensemble of four algorithms to determine 
precipitation type. These four algorithms are 
Baldwin, Revised Bladwin, Ramer, and Bourgouin 
(Evans and Graham 2011).  	
  
	
  
c. Algorithms	
  

	
  
The NAM uses an explicit microphysics 

scheme and so uses one more algorithm than the 
GFS. The Baldwin-Schichtel algorithm uses a 
multiple step process to determine precipitation 
type.  This process begins by finding the highest	
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Figure 1. A 4x4 Contingency table with the four 
categories of precipitation type.  The cells 
correspond to the values in the HSS and PSS 
equations.  
	
  
saturated layer above the ground and determines 
the temperature of that layer. Then the melting 
and freezing layers a hydrometeor encounters on 
its way to the surface are found by calculating the 
area between the 0°C or -4°C isotherm and the 
wet-bulb temperature. This concept is applied at 
the surface and aloft within the layers (Evans and 
Graham 2011). 	
  

The revised version of the Baldwin scheme 
changes a condition to create a bias toward snow 
to avoid a bias for freezing rain and ice pellets. 
When ice crystals are determined from the 
saturated layer, then the area between the wet-
bulb temperature and the 0°C wet bulb isotherm is 
used (Glass 2008). 	
  
The Ramer method uses relative humidity, 
temperature, and wet-bulb temperature to 
determine precipitation type. At different pressure	
  
levels where precipitation is likely to occur, the ice 
fraction is calculated and used to determine 
precipitation type in this scheme (Ramer 1993).  	
  

The Bourgouin method calculates the area 
enclosed for a dry, adiabatic process that follows 
the 0°C isotherm and the environmental 
temperature. The area calculated is then classified 
into conditions to diagnose precipitation type 
(Bourgouin 2000). 	
  

The NAM uses one more algorithm, the 
microphysics scheme. This scheme uses frozen 
hydrometeor fraction and skin temperature to 
classify precipitation type (UCAR 2011).     	
  
	
  
3. VERIFICATION 

 
mPING observations are first used to verify 

the model’s forecast for all precipitation types, 
which is done by constructing 4x4 contingency 
tables (Figure 1).  To further test model  

 

2x2 Table Snow Not Snow 
Snow  Forecasted 

and Observed 
a 

Forecasted, 
not observed 

b 

Not  Snow Not forecasted, 
but observed 

c 

Not forecasted 
and not 
observed 

d 

Figure 2. A 2x2 contingency table showing what 
each cell letter represents. The example used 
here is for snow. 

 
 
performance, 2x2 contingency tables are formed 
for each precipitation type (Figure 2).  
 
a. 4x4 Contingency Tables 

 
4x4 contingency tables are constructed to 

evaluate the skill of each model (Figure 1).  Values 
along the main diagonal represent a correct 
classification of precipitation type. Values that 
stray off this diagonal represent a 
misclassification. The Peirce and Heidke skill 
scores were calculated from the contingency 
tables. Both skill scores use the joint and marginal 
distributions of forecasts and observations (Wilks 
2006). Equations 1 and 2 show the general form of 
the Heidke (HSS) and Peirce (PSS): 

€ 

HSS =

p(yi,oi) − p(yi)p(oi)
i=1

I

∑
i=1

I

∑

1− p(yi)p(oi)
i=1

I

∑

PSS =

p(yi,oi) − p(yi)p(oi)
i=1

I

∑
i=1

I

∑

1− [p(o j )]
2

j=1

J

∑

 

In this project y, represents the forecasts and o, 
represents the observations. Where p(yi,oi), is the 
joint distribution and p(yi)p(oi) is the marginal 
distribution. I is the number of possible forecasts 
and J is the number of possible outcomes. 	
  

When using a contingency table larger than 
the standard 2x2, only certain scores are available 

4x4	
  Table	
   Rain	
   Snow	
   Freezing	
  
Rain	
  

Ice	
  
Pellets	
  

Rain	
    y1, o1 y1, o2	
   y1, o3	
   y1, o4	
  

Snow	
   y2, o1	
   y2, o2 y2, o3	
   y2, o4	
  

Freezing	
  
Rain	
  

y3, o1	
   y3, o2	
    y3, o3 y3, o4	
  

Ice	
  Pellets	
   y4, o1	
   y4, o2	
   y4, o3	
    y4, o4 

(Eq. 1) 

 

 

 

(Eq. 2) 
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and the two used here are the HSS and PSS. 
Possible values of both the HSS and PSS skill 
scores span the interval [-1,1]. A score of 1 is a 
perfect forecast for the event. A value of 0 
indicates zero skill.  A value of -1 is of interest only 
in the case of 2x2 tables and indicates a perfect 
inverted forecast (the sense of the forecast is 
backwards). Negative skill is rarely encountered in 
contingency tables larger then 2x2.	
  
	
  
b. 2x2 Contingency Tables	
  
	
  

The 4x4 contingency tables are broken down 
into 2x2 contingency tables for each of the four 
precipitation types. This was done to provide 
information about which precipitation type was 
affecting the skill scores and to analyze where a 
precipitation type is problematic for the model.  	
  
An example of the 2x2 for snow would have two 
categories: “snow” and “not snow” (Figure 2).  
With the 2x2 contingency table, performance 
measures that demonstrate biases can be applied 
to the data set and skill scores can be calculated. 
However, the focus will stay on the HSS and PSS, 
and we additionally computed bias and hit rate.  	
  

€ 

HSS =
2(ad − bc)

(a + c)(c + d) + (a + b)(b + d)

PSS =
ad − bc

(a + c)(b + d)

Bias =
a + b
a + c

HitRate =
a + d

a + b + c + d

 

As shown in Figure 2, a represents a hit, b 
represents a false alarm, c represents a miss, and 
d represents a correct null forecast. The HSS and 
PSS calculations are now easier to interpret for 
the 2x2 table. Bias is calculated with a perfect 
score being a value of 1.  Below one the model is 
under forecasting, above 1 the model is over 
forecasting.  The hit rate is calculated by taking 
the correct forecasts and correct null forecasts 
divided by the total number of forecast occasions.	
  

Rain and snow are the most common forms 
of precipitation, but rare events like freezing rain 

and ice pellets are still very important and can 
have detrimental affects on society. High hit rates 
may be due to many correct null forecasts.  In fact 
in some cases, hit rates might be improved if the 
event were never forecast to happen (Jolliffe and 
Stephenson 2003). That’s why more attention will 
still be drawn on the skill scores because they 
account for the rarity of events.	
  
	
  
4. RESULTS	
  
	
  
a. 4x4 Analysis 	
  

	
  
Bootstrap resampling statistics (Wilks 2006) 

were used on the PSS and HSS from each 
model’s three and six hour forecasts. The box 
plots (Figure 3 and 4) show 95% confidence 
intervals for each forecast. Also, Table 1 provides 
the mean HSS and PSS for each model’s three 
and six-hour forecast. The NAM produced the best 
skill in both the three and six hour forecasts. As 
expected the three-hour forecasts for each model 
are more skillful than the six-hour forecasts. 	
  

Table 1.	
  Each model’s three and six-hour mean 
HSS and PSS for all precipitation types.	
  

Permutation tests were used to determine the 
statistical difference between the different scores. 
The threshold used for p-values to determine the 
“significance” in this study is 0.05.  If the value is 
greater than, 0.05, the difference between model 
forecasts is not significantly different (in a 
statistical sense), and so one forecast cannot be 
declared statistically “better” or more skillful than 
another. 	
  

For, permutation tests on the HSS (Fig. 3), 
the RAP1 and RAP2 six-hour forecasts had the 
least skill. The GFS and NAM six-hour forecasts 

Model 
Forecasts	
  

Mean HSS	
   Mean PSS	
  

GFS 3-hour	
   0.493	
   0.478	
  

NAM 3-hour	
   0.497	
   0.484	
  

RAP1 3-hour	
   0.469	
   0.449	
  

RAP2 3-hour	
   0.486	
   0.478	
  

GFS 6-hour	
   0.434	
   0.425	
  

NAM 6-hour	
   0.444	
   0.455	
  

RAP1 6-hour	
   0.382	
   0.384	
  

RAP2 6-hour	
   0.370	
   0.397	
  

(Eq.	
  3)	
  

	
  

(Eq.	
  4)	
  

	
  

(Eq.	
  5)	
  

	
  

(Eq.	
  6)	
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Figure	
  3.	
  Distribution	
  of	
  the	
  Heidke	
  skill	
  scores	
  resulting	
  from	
  5000-­‐sample	
  bootstrapping.	
  	
  The	
  circle	
  is	
  
the	
  mean	
  of	
  the	
  bias	
  corrected	
  bootstrapped	
  confidence	
  intervals.	
  The	
  lower	
  end	
  of	
  the	
  box	
  is	
  the	
  2.5	
  

percentile	
  and	
  the	
  upper	
  end	
  is	
  the	
  97.5	
  percentile.	
  	
  Therefore,	
  the	
  whole	
  box	
  represents	
  95%.	
  

Figure 4. Distribution of the Peirce skill scores resulting from 5000-sample bootstrapping.  The circle is 
the mean of the bias corrected bootstrapped confidence intervals. The lower end of the box is the 2.5 
percentile and the upper end is the 97.5 percentile.  Therefore, the whole box represents 95%.
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were both significantly better than both RAP 
models. The RAP1 had the least skill in the three-
hour forecast.  The NAM had the best skill score 
for both the three and six-hour forecasts.  	
  

The PSS (Fig. 4) shows that the GFS six-
hour forecast is not significantly different than the 
RAP1 and RAP2 six-hour forecast, though the p-
value is close to 0.05.  However, the NAM is still 
significantly better than the RAP1 and RAP2. A 
larger data set is needed to declare statistical 
significance. The NAM again had the best skill 
scores for the three and six-hour forecasts.	
  
	
  
b. 2x2 Analysis	
  
	
  

The three-hour (Table 2) and six-hour (Table 
3) forecasts of each precipitation type didn’t show 
conclusive evidence of one model being superior 
to the others.  Each model had its successes, but 
not one model outperformed the others in all 
precipitation types. 	
  

For freezing rain, the six-hour forecast shows 
the GFS having the most skill, but for the three-
hour forecast shows the RAP2 has the most skill. 
The RAP2 is the variation of the RAP where 
forecasts of snow and freezing rain were collapsed 
to just freezing rain. The RAP2 also has the 
highest bias score for all the models for freezing 
rain at 2.27 for the six-hour forecast. Thus, the 
RAP2 over-predicted freezing rain. Even the RAP1 
has a bias score of over 1, however as stated 
previously, the hit rate is high for freezing rain; this 
is due to the correct null forecasts (d) that are 
added to the correct forecast (a). 	
  

The NAM had the best skill out of all the 
models for forecasting ice pellets.  However, the 
skill scores for each model are low. All models for 
both the three and six hour forecast have a bias 
below 1. Bias scores less than 1 indicate that the 
event is under-forecasted. Ice pellets seem to be 
the greatest challenge, especially for the RAP.  
The skill scores and bias are both close to zero, 
which means that the RAP seldom forecasts ice 
pellets, if at all, for the two cases that were 
evaluated. 	
  

For rain, the result is quite different. The bias 
scores for all rain forecasts are above 1.  The bias 
is especially high for the RAP1 and RAP2, scoring 
2.04 on the six-hour forecast.  The NAM had the 
best hit rates for rain, but had the best skill in the 
six-hour forecast.  The RAP1 and RAP2 three-
hour forecasts achieved a HSS of 0.664 and a 
PSS of 0.799 for rain. 	
  

Results are similar for snow, where the NAM 
six-hour forecast displays the most skill while the 
three-hour forecast of the RAP2 is most skillful.  

However, the RAP1 is the variation that is 
collapsed to snow.  The low skill of the RAP1 
achieved comes from the over-forecast of snow.  
Its bias is slightly higher than the RAP2, which 
causes the drop in skill. 	
  

It is clear in Tables 2 and 3 that models drop 
off in skill significantly when forecasting freezing 
rain and ice pellets. Figure 3 and 4 show that the 
skill scores for all precipitation types are in 
between the skill scores that are seen for rain and 
snow versus freezing rain and ice pellets. The 
overcompensation for rain and snow and the 
undercompensation for freezing rain and ice 
pellets evens out, when looking at all precipitation 
types. 	
  
	
  
c. Forecast Percent	
  

	
  
In this study, we did not have a category for 

no precipitation forecasted, where precipitation 
was observed. Therefore, if the model didn’t 
predict precipitation for an observed report, the 
report was not included in the analysis. This 
caused a different amount of forecasts and 
observations for each model.  For the three-hour 
forecasts there were 1,539 mPING observations. 
The GFS forecasted precipitation for 94.89% of 
those points.  The NAM forecasted precipitation 
for 74.94% and the RAP forecasted for 89.27% of 
those points.  	
  

For the six-hour forecasts there were 1,603 
mPING observations.  The GFS forecasted for the 
most again, as it forecasted precipitation for 
94.67% of those points. The NAM was the lowest 
again, forecasting precipitation for 67.31% of the 
points. The RAP forecasted precipitation for 
87.71% of those points.	
  
	
  
5. CONCLUSIONS	
  
	
  

The Heidke and Peirce skill scores were 
evaluated for each models forecast of precipitation 
type.  Bootstrap statistics were used on the 
forecasts for all precipitation types.  95% 
confidence intervals of each model were shown.  
The NAM had the highest overall skill scores for 
both the three and six-hour forecasts, for all 
precipitation types.  The highest skill score 
achieved by all models and forecast times was the 
NAM three-hour Heidke mean skill score of 0.497. 
This shows all though the models may have skill, 	
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Table 2. The three-hour forecast 2x2 analysis values. Heidke skill score(HSS), Peirce skill score(PSS), 
Bias, and hit rate (HR) shown for each precipitation type and model. The red numbers represent the worst 
skill score for each precipitation type. The green numbers represent the best skill scores. 

	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Table 3. The six-hour forecast 2x2 analysis values. The same set-up as in Table 2. 

	
  
	
  
	
  

	
   Freezing	
  Rain	
   Ice	
  Pellets	
   Snow	
   Rain	
  

GFS	
   HSS:	
  0.213	
  
PSS:	
  0.181	
  
Bias:	
  0.67	
  	
  
HR:	
  0.909	
  

HSS:	
  0.286	
  
PSS:	
  0.238	
  
Bias:	
  0.54	
  	
  
HR:	
  0.803	
  

HSS:	
  0.580	
  
PSS:	
  0.577	
  	
  
Bias:	
  1.11	
  
HR:	
  0.792	
  

HSS:	
  0.626	
  
PSS:	
  0.708	
  	
  
Bias:	
  1.34	
  
HR:	
  0.870	
  

NAM	
   HSS:	
  0.074	
  
PSS:	
  0.076	
  	
  
Bias:	
  0.92	
  
HR:	
  0.874	
   	
  

HSS:	
  0.309	
  
PSS:	
  0.246	
  	
  
Bias:	
  0.43	
  	
  
HR:	
  0.813	
  

HSS:	
  0.643	
  
PSS:	
  0.635	
  	
  
Bias:	
  1.11	
  
HR:	
  0.826	
  

HSS:	
  0.617	
  
PSS:	
  0.731	
  	
  
Bias:	
  1.45	
  	
  
HR:	
  0.882	
  

RAP1	
   HSS:	
  0.210	
  
PSS:	
  0.236	
  	
  
Bias:	
  1.26	
  
HR:	
  0.881	
  

HSS:	
  0.003	
  
PSS:	
  0.003	
  	
  
Bias:	
  0.003	
  
HR:	
  0.785	
  

HSS:	
  0.611	
  
PSS:	
  0.603	
  	
  
Bias:	
  1.19	
  
HR:	
  0.809	
  

HSS:	
  0.664	
  
PSS:	
  0.799	
  	
  
Bias:	
  1.52	
  
HR:	
  0.882	
  

RAP2	
   HSS:	
  0.223	
  
PSS:	
  0.297	
  	
  	
  
Bias:	
  1.72	
  
HR:	
  0.861	
  

HSS:	
  0.003	
  
PSS:	
  0.003	
  	
  
Bias:	
  0.003	
  
HR:	
  0.785	
  

HSS:	
  0.666	
  
PSS:	
  0.660	
  	
  
Bias:	
  1.13	
  
HR:	
  0.835	
  

HSS:	
  0.664	
  
PSS:	
  0.799	
  	
  
Bias:	
  1.52	
  
HR:	
  0.882	
  

	
   Freezing	
  Rain	
   Ice	
  Pellets	
   Snow	
   Rain	
  

GFS	
   HSS:	
  0.289	
  
PSS:	
  0.241	
  
Bias:	
  0.636	
  
HR:	
  0.913	
  

HSS:	
  0.129	
  
PSS:	
  0.100	
  
Bias:	
  0.406	
  
HR:	
  0.780	
  

HSS:	
  0.569	
  
PSS:	
  0.566	
  
Bias:	
  1.07	
  
HR:	
  0.787	
  

HSS:	
  0.509	
  
PSS:	
  0.629	
  
Bias:	
  1.61	
  
HR:	
  0.818	
  

NAM	
   HSS:	
  0.154	
  
PSS:	
  0.175	
  
Bias:	
  1.30	
  
HR:	
  0.863	
  

HSS:	
  0.202	
  
PSS:	
  0.168	
  
Bias:	
  0.557	
  
HR:	
  0.794	
  

HSS:	
  0.582	
  
PSS:	
  0.586	
  
Bias:	
  0.92	
  
HR:	
  0.794	
  

HSS:	
  0.575	
  
PSS:	
  0.703	
  
Bias:	
  1.55	
  
HR:	
  0.864	
  

RAP1	
   HSS:	
  0.139	
  
PSS:	
  0.154	
  
Bias:	
  1.25	
  
HR:	
  0.853	
  

HSS:	
  -­‐0.001	
  
PSS:	
  -­‐0.001	
  
Bias:	
  0.004	
  
HR:	
  0.799	
  

HSS:	
  0.536	
  
PSS:	
  0.533	
  
Bias:	
  1.04	
  
HR:	
  0.773	
  

HSS:	
  0.500	
  
PSS:	
  0.713	
  
Bias:	
  2.04	
  
HR:	
  0.815	
  

RAP2	
   HSS:	
  0.103	
  
PSS:	
  0.162	
  
Bias:	
  2.27	
  
HR:	
  0.783	
  

HSS:	
  -­‐0.001	
  
PSS:	
  -­‐0.001	
  
Bias:	
  0.004	
  
HR:	
  0.799	
  

HSS:	
  0.553	
  
PSS:	
  0.562	
  
Bias:	
  0.883	
  
HR:	
  0.776	
  

HSS:	
  0.500	
  
PSS:	
  0.713	
  
Bias:	
  2.04	
  
HR:	
  0.815	
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improvements still need to be made in forecasting 
precipitation type.	
  

Analysis of each individual precipitation type 
was done using 2x2 contingency tables.  The best 
skill scores were seen for rain and snow.  
Forecasts of freezing rain and ice pellets are 
where the model skill scores dropped off. The lack 
of skill in forecasting ice pellets and freezing rain, 
caused the overall drop seen in skill scores for all 
precipitation types.  	
  

Further analysis will need to be done with 
more winter weather events to have a more 
conclusive result.  However, these initial results 
are important to provide information on where 
each model’s strengths and weaknesses are.  
Also, model tendencies of over and under 
forecasting each precipitation type can help the 
knowledge of forecasters who are forecasting 
these events.  Further analysis that would be 
beneficial is to analyze the algorithms and 
schemes used by the model to forecast 
precipitation type.   This could help to further 
diagnose what works best in the model’s forecast 
and where improvements can be made, 
especially, in diagnosing the more rare events, 
such as freezing rain and ice pellets.  	
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