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ABSTRACT 
Weather radar is a useful tool for the meteorologist in examining the atmosphere and determining 

what types of weather are occurring, how large an area a weather event might cover, and how severe 
that event might be. It is also widely used for automated applications. However, weather radar can pick 
up on objects other than just weather, causing the data to become cluttered and harder for forecasters to 
decipher. Quality control algorithms can help to identify which echoes returning to the radar are 
meteorological and which are not, and they can then remove such contaminants to create a clearer image 
for the meteorologist. With the recent widespread upgrade to dual polarization technology for the WSR-
88D (Weather Surveillance Radar 1988 Doppler) radars, polarimetric variables can be used in these 
quality control algorithms, allowing for more aspects of the data to be analyzed and more of the 
contamination to be removed. This study analyzes those polarimetric variables in order to determine 
which are the most important for weather/non-weather discrimination. Such research serves to help rank 
variable importance and prevent the quality control algorithm from being overfit, thus aiding in developing 
the most efficient algorithm for operational use. 

 
  

.
1. INTRODUCTION  
 

Radar data provides useful information for 
the meteorologist.  It is helpful in determining the 
severity and coverage of storms, aids in accurate 
forecasts, and thus helps to relay the most reliable 
and detailed information to the public in order to 
help ensure safety and preparedness. Useful 
applications using weather radar data include 
estimating precipitation amounts (Fulton et al. 
1998) and aiding in hail detection (Ortega et al. 
2009). But sometimes the radar beam can detect 
non-meteorological objects (i.e., contaminants), 
resulting in a more cluttered view for the 
meteorologist to decipher when looking at the 
weather radar display. Types of contaminants 
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include the presence of birds, insects, and dust. 
Contamination may also result from anomalous 
propagation, which involves the bending of the 
radar beam outside of what is expected. When the 
radar beam bends in this way, it can detect near-
surface obstacles such as terrain or buildings and 
cause an erroneous echo return. 

Quality control algorithms have been 
developed by researchers and scientists that 
serve to identify which radar echoes are 
meteorological and which are non-meteorological 
(e.g., by Steiner and Smith (2002); Kessinger et al. 
(2003); Zhang et al. (2004); Lakshmanan et at 
(2007a, 2012)). Lakshmanan et al. developed an 
algorithm in 2007 which operated on three radar 
moments, including velocity (V), reflectivity (Z), 
and spectrum width (SPW). Information on the 
identity of radar echoes taken from these quality 
control algorithms can be used to remove such 
clutter from the weather radar data. This would 
create an overall clearer image for the 
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meteorologist and forecaster to look at and discern 
what is happening in the atmosphere in a more 
efficient way. 

With the recent widespread operational 
use of dual polarization radar, new quality control 
algorithms can be developed that incorporate 
polarimetric variables. Dual polarization radar 
allows for a greater number of variables to be 
utilized in such algorithms that were before 
unavailable with non-polarimetric radars. One 
such algorithm has been developed for dual 
polarization radar data (Lakshmanan et al. 2013). 
This algorithm utilizes the three moments from the 
previous non-polarimetric quality control 
algorithms, in addition to three others including 
correlation coefficient (RhoHV), differential 
reflectivity (Zdr), and differential phase shift 
(PhiDP). From these six radar moments, other 
polarimetric variables can be calculated.  

One downfall of non-polarimetric quality 
control methods is that they tend to focus only on 
removing the anomalous propagation and ground 
clutter, since these contaminants have high 
reflectivity values (Lakshmanan et al. 2013). With 
the more diverse collection of variables available 
through polarimetric radar data, biological targets 
can also be better detected and thus removed 
from the contamination in the data.  

The recent Lakshmanan et al. (2013) 
quality control technique was developed in such a 
way that allows for statistical methods to be 
applied to the data. The present study seeks to 
use such statistical methods to examine which of 
these polarimetric variables are the most important 
in weather/non-weather discrimination. A 
combination of three different statistical methods 
are employed, including a permutation-based test, 
the Kullback-Leibler method known as the J-
measure, and a χ² statistics-based test. In total, 17 
different polarimetric variables were utilized for the 
research, as will be described in Section 2, as will 
the specific cases from which the data for the 
study were taken. Section 3 will discuss the 
various statistical methods that were used, leading 
to the analysis of such data in Section 4, and 
concluding thoughts presented in Section 5. 
 
2. BACKGROUND  
 
 The data for this study were taken from a 
series of specific cases, each of which 
represented a specific type contaminant which 
should be removed. These cases are listed in 
Table 1. 

 The quality control algorithm used for this 
study operates on six moments available from the 
WSR-88D polarimetric radar. These include the 
absolute velocity (absvel), correlation coefficient 
(RhoHV), differential reflectivity (Zdr), differential 
phase shift (PhiDP), reflectivity (Z), and spectrum 
Width (SPW). 
 Based on these six radar moments listed 
above, eleven additional variables were computed 
using the data, resulting in a total of 17 different 
polarimetric variables for the dataset. The 
additional variables calculated are as follows: the 
gate-to-gate shear computed from velocity 
(azshear); the composite of dBZ, providing the 
maximum dBZ that is found in the vertical column 
(dbzcomp); the maximum height at which the 
reflectivity value is greater than -14 dBZ, which is 
considered a weak echo (height); the reflectivity 
value found at 3 km from tilts greater than 1 
degree (dbz3km); the maximum height at which 
the reflectivity value is greater than 0 dBZ 
(htgood); the difference between the reflectivity 
value at the lowest tilt and the next higher tilt, at an 
elevation greater than 1 degree (delta); the local 
variance of the reflectivity computed in a 5x5 
neighborhood centered around the range gate 
(refvar); the local variance of differential reflectivity 
computed in a 5x5 neighborhood centered around 
the range gate (zdrvar); the variance of the 
correlation coefficient (rhohvvar); a simplified 
hydrometeor classification algorithm, or HCA 
(metsignal); and the absolute value of differential 
reflectivity (abszdr).  
 A neural network was also used on the 
data for this study. Neural networks are computer 
programs that operate on a specific set of data 
and become trained on that data in order to  
 

 Table 1. List of cases from which data were obtained 
(Lakshmanan et al. 2013) 
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develop a type of pattern-recognition. Neural 
networks can thus look through large datasets and 
find patterns within them in an efficient manner. 
The neural network used for this study was trained 
on a set of cases that were chosen due to their 
association with specific types of non-weather 
echoes (Lakshmanan et al. 2013). These cases 
are listed below in Table 2. 

 
     
 
 
3.  METHODS 
 

Three different statistical methods were 
employed in order to assess the importance of 
each of the polarimetric variables. These include a 
permutation test, a calculation of the Kullback-
Leibler distance called J-measure, and a χ² 
statistics-based measure. These three methods 
are described in more detail in the following sub 
sections.   
 
a.  Permutation Test 
 

The first test that was utilized involved a 
permutation-based approach. This process 
involved running the dataset through a computer 
program that would take one column of data at a 
time, corresponding to one of the polarimetric 
values, and randomize the values so that all of the 

data values for that specific variable are out of 
place. With these values randomized, the data for 
that variable, within the frame of the entire training 
dataset, has no significance.  
 With this new dataset, the data are then 
run through the trained neural network using the 
WDSS-II program (Warning Decision Support 
System – Integrated Information). The 
w2scoreTrainedNetwork was used through the 
WDSS-II program for this permutation test. This 
specific algorithm in the program produces an 
output which can be used to calculate a forecast 
skill using a contingency table, giving a set of 
values for different thresholds, including the 
number of hits, misses, false alarms, and accurate 
null forecasts. Only the threshold at 0.5 was taken 
for each run for this dataset, because 
operationally, only the threshold at 0.5 is 
examined when determining whether or not to 
keep a range gate (Lakshmanan et al. 2013). 

From this information, the Heidke Skill 
Score (HSS; Heidke 1926) was calculated. The 
HSS is a statistical test used to test the accuracy 
of forecast. A hit is characterized as a forecast for 
an event that did occur; false alarms correspond to 
a forecast for an event that didn’t occur; misses 
represent a forecast for an event that didn’t 
accurately predict the event; accurate null 
forecasts represent agreement between the 
forecast and non-events. In reference to Figure 1, 
the "a" corresponds to the number of hits, the "b" 
is the number of false alarms, the "c" is the 
number of misses, and the "d" is the number of 
accurate null forecasts.  
 The steps above were repeated for each 
of the columns of data in the dataset so that the 
accuracy of each polarimetric variable could be 
tested and a Heidke Skill Score could be 
calculated. The skill score was also calculated for 
the dataset before any permutation had been 
performed. When the skill score of the permuted 
dataset is compared to the skill score of the un-
permuted dataset, the loss in skill score can be 
assessed. This process provides useful 
information about how well the dataset does at 
forecasting weather/non-weather echoes. If a 
polarimetric variable is important in distinguishing 
between weather and non-weather echoes, then 
the skill score of that dataset should reduce when 
the values for that variable are randomized. The 
more important the variable in distinguishing 
between echoes, the more of a negative impact 
should occur on the overall skill when those values 
are randomized. 

Table 2. List of cases from which the neural network 
was trained (Lakshmanan et al. 2013) 
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 Figure 1. Contingency table representing the four different 
values that are taken into account in order to calculate the 
Heidke Skill Score, based on the correlation between event 
forecasts and actual events that were observed. (European 
Virtual Organisation for Meteorological Training) 

 
b.   Kullback-Leibler distance 
 
 A second test that was performed dealt 
with the Kullback-Leibler distance, known as the J-
measure (Jeffreys 1946; Lin 1991). Data that were 
used for this method were not permuted or 
changed in any way. The basis for this method, 
and for the χ² statistics-based test that will be 
described later, is the distinction that was set for 
each data value as to whether or not that data 
value represents a weather echo or a non-weather 
echo, corresponding to a value of 1 for weather 
echoes and a value of 0 for non-weather echoes. 
The Kullback-Leibler distance is given by the 
equation 
 

 
. 

Histograms were created for each of the 
polarimetric variables in order to find the 
probability distributions for the equation. Separate 
histograms were created for those data points that 
were weather (assigned a 1) and non-weather 
(assigned a 0). 
 
c.    χ² statistics-based measure 
 

 The last test that was performed was 
similar to the J-measure test, in that the probability 
distribution for each polarimetric variable were 
taken from histograms and then applied to the 
equation, represented as, 
 

. 

 
This method differs from the J-measure calculation 
in that a third histogram is used which combines 
the sets of data for both weather and non-weather, 
giving a set of combined probability distributions.  
  
4. ANALYSIS 
  
a.   Permutation Test 
 

After calculating the loss in skill score of 
the training dataset after each of the polarimetric 
variables had been permuted individually, two 
separate graphs were created in order to assess 
the results. Fig.2 and Fig.3 illustrate the results of 
these permutation-based calculations. The training 
dataset was shown to have the most significant 
drop in skill score after the dbz3km had been 
permuted. As mentioned earlier, dbz3km is a 
variable that reflects the reflectivity value at three 
kilometers in height from tilts greater than one 
degree. Non-weather contaminants such as birds, 
insects, and other ground clutter are found at low 
levels and wouldn’t be present in locations as high 
as three kilometers above the ground. Thus data 
values in dbz3km are less likely to contain values 
reflecting non-weather targets. Using data values 
that are from a tilt greater than 1 degree also help 
to reduce the amount of ground clutter that would 
otherwise be picked up at lower levels. 
 The height variable also showed to have a 
notable negative impact on the skill score of the 
dataset. This result makes sense as well. Because 
the height values are representative of reflectivity 
values greater than -14 dBZ, such data would not 
include weak echoes and areas where no targets 
are present. The height variable would thus do 
well at distinguishing areas of isolated 
contaminants. Such areas outside the proximity of 
a weather event would show low height values, 
where the only reflectivity returned is that of the 
contaminants, commonly found at lower levels in 
the atmosphere. 
 While the randomization of PhiDP is 
shown in the graph to have one of the more 
significant drops in the overall skill score, it was 
realized that PhiDP on its own is a rather arbitrary 
variable to look at. This is because PhiDP, or the 
differential phase shift of the radar, has an 
arbitrary starting value. Thus the range derivative 
of PhiDP, called Kdp, should be taken in its place 
for an accurate reflection of its impact. 
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Figure 2.   Heidke Skill Scores for the entire dataset calculated after the individual polarimetric variables had been 
permuted. The red line near the top of the graph illustrates the original Heidke Skill Score of the training dataset calculated 
before any of the variables had been permuted.  

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Loss in skill score of the entire training dataset after each variable was permuted, as compared to 
the Heidke Skill Score computed for the original un-permuted data 
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The Zdrvar variable was one other 
parameter to show a significant effect on the skill 
score of the dataset once permuted. Zdr takes into 
account the ratio between the horizontal and 
vertical reflectivity of the targets, thus the variance 
of such a measure would aid in understanding the 
consistency of the field of targets present. A more 
consistent field would be more representative of 
hydrometeors, as ground clutter, anomalous 
propagation, and biological targets should only be 
found isolated from the rest of the field or in a 
smaller area within the larger area of 
hydrometeors.  
 This permutation test was performed only 
once on the training dataset due to restricted time; 
however, multiple runs of such a test would 
provide a valuable range of results, thus showing 
the distribution and trend of the loss of skill score 
for each polarimetric variable. 
 
b.   J-measure and χ² statistics-based tests 
 
 Data from the histograms yielded similar 
results for both the J-measure calculation and the 
χ² statistics-based measure. As can be seen in 
Figure 4 and Figure 5, the variables associated 
with correlation coefficient, RhoHV and rhohvvar, 
show the most importance in distinguishing 
between weather and non-weather compared to 
the other variables. Such a large separation in 
importance between these variables and those of 
the rest of the training set, while quite vast, does 
make sense with the type of data that RhoHV and 
rhohvvar represent. Both variables provide an idea 
of the type of shape that a target has, as it 
measures the correlation between the horizontal 
and vertical echo returns of that object. Non-
weather objects will have a lower correlation than 
meteorological targets due to their complex and 
non-uniform shapes. Thus RhoHV and rhohvvar 
on their own are good at distinguishing between 
meteorological and non-meteorological targets.    
 Metsignal also has a notable importance 
in discriminating between weather and non-
weather targets in the data. Again, metsignal is 
like a simplified HCA, thus it takes into account 
multiple parameters that can identify the types of 
hydrometeors present within the return radar 
echoes. On its own, the metsignal, similar to the 
RhoHV variables, is good at distinguishing 
between weather and non-weather targets. 
 That being said, it is important to note that 
the J-measure and the χ² statistics-based test are 
both univariate tests, meaning that they take into 

account and examine only one variable at a time 
without comparing its usefulness within a larger 
group of variables. Thus univariate skill is not 
necessarily a reflection of a variable’s uniqueness. 
Through univariate tests, some variables may 
show importance in discrimination on their own, 
but when compared to other variables, they show 
a similar discrimination; thus, that variable is not 
unique within the frame of the entire set of 
variables in terms of discrimination. The 
permutation-based test, however, takes into 
account the skill score of the entire dataset after 
each of the variables has been permuted, thus the 
efficacy of the variables is assessed in relation to 
the whole of the collection of data. Results from 
such tests provide a more accurate depiction of  
variable importance, as they reveal a unique way 
of assessing the performance of the data as a 
whole from the perspective of each individual 
polarimetric variable. 
 
5. CONCLUSIONS 

 
 The permutation test reveals that the most 
important polarimetric variable for weather/non-
weather discrimination is dbz3km. This makes 
sense because this variable focuses on data found 
at higher heights than most non-meteorological 
targets would expect to be found.  
 The J-measure and χ² statistics-based 
tests both revealed similar results. RhoHV and 
rhohvvar showed the greatest importance in 
distinguishing between weather and non-weather. 
These results also make sense, because RhoHV 
helps in determining the shape of targets being 
sampled, and non-weather targets are more likely 
to have a non-uniform shape compared to 
hydrometeors. 
 When assessing variable importance from 
these three tests, it is important to keep in mind 
that the nature of each test is different. The 
permutation test takes into account the importance 
of each polarimetric variable within the set of all 
variables. Results from the permutation test 
therefore reveal a unique variable importance 
within the context of the entire set of variables. 
The J-measure and χ² statistics-based tests are 
univariate, and thus to do take into account the 
importance of the variable compared to the rest of 
the variables being tested. As a result, these tests 
do not show as much of a uniqueness in 
distinguishing between weather and non-weather 
echoes, compared to that of the permutation test.  
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Figure 4. Distribution of J-measure values computed for each of the polarimetric variables, with higher values 
corresponding to a greater importance in distinguishing between meteorological and non-meteorological targets. 

Figure 5. Distribution of rchi values computed for each of the polarimetric variables, where the higher values 
represent a greater significance in distinguishing between weather and non-weather targets 
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Realizing the difference between variable 
uniqueness, as shown by the permutation test, 
and variable importance as shown by the J-
measure and χ² statistics-based test, is necessary 
when assessing which variables are most useful 
for improving polarimetric quality control 
algorithms. Variable importance found only 
through the J-measure and χ² statistics-based test 
may overlook otherwise telling distinctions. The 
permutation test provides a unique perspective 
into variable importance by taking into account the 
skill of variables within the context of an entire 
diverse variable set. 
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