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ABSTRACT

While sonic anemometers have been in use for nearly 50 years, there is no literature
which investigates the optimal sampling rate for sonic anemometers based on the
Shannon-Nyquist Sampling Theorem. In this experiment, wind is treated as a
wavelet, so that sonic anemometer data with multiple sampling rates can be analyzed
using spectral analysis techniques. From the power spectrum, it is then possible
to determine the minimum frequency at which a sonic anemometer must sample
in order to maximize the amount of information gathered from the wavelet, while
minimizing the amount of data stored. Using data from the Oklahoma Mesonet and
data collected on-site, no obvious peak is present in any resulting power spectra that
can be definitively be considered viable. This result suggests a nearly random power
distribution among frequencies, which is better-suited for averaging and integrating

data collection processes.

1. Introduction
a. Motivation

This experiment was conducted to attempt to
establish a set, optimal sampling rate based on the
frequency and power content of the wind’s ‘signal’.
Currently, sonic anemometer data is averaged over
a two minute time window. This technique, de-
scribed further in section 1.b, has been carried

over from older types of anemometers, and may
not be as well suited for non-mechanical anemome-
ters. While a temporal average may give a better
estimate of the general wind pattern for a given lo-
cation, it does not provide as much information for
those interested in modeling the boundary layer,
who may be interested in more specific details of
the wind and its properties.
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b. Background

Prior to the invention of the sonic anemometer,
anemometers had used mechanical moving parts
in their measurement of wind speed. Because of
the momentum associated with moving parts of
finite mass, the wind speed which is measured at
a given point in time with one of these anemome-
ters is not instantaneous; there is some amount
of time that it takes the anemometer to acceler-
ate and decelerate. It is then necessary to take
a running temporal average to account for this
start-up time and slow-down time. However, for
sonic anemometers, the wind speeds which are
measured are nearly instantaneous measurements
of the wind at that particular time. Temporal av-
eraging for sonic anemometers was adopted in part
to allow direct comparison between datasets which
use mechanical anemometers and those which use
sonic anemometers; there is no scientific basis for
the 2-minute average on sonic anemometer data.

c. Prior Research

No studies regarding the optimization of the
sampling rate of a sonic anemometer have been
conducted to date. Previous papers in the atmo-
spheric sciences have used techniques of wavelet
analysis to study surface turbulence during hurri-
cane landfall and to analyze meteorological vari-
ables under the winter thunderclouds. General
signal processing and spectral analysis techniques
were used for this study.

2. Methods
a. Data Used

For data analysis in this project, multiple
datasets were acquired. The primary dataset was
from an experiment by the Oklahoma Mesonet
on July 30, 2003, using a sonic anemometer (un-
known manufacturer) sampling at a rate of 10 Hz.
Due to concern about the sampling rate being too
fast, decimated versions of the data were also ana-
lyzed, at sampling rates of 5 Hz and 2.5 Hz. In ad-
dition, daily data was collected and analyzed from

a local station of the Oklahoma Mesonet, which
samples every 3 seconds. While data analysis on
these data was being conducted, data were being
collected simultaneously by two Vaisala anemome-
ters on-site, both with a sampling rate of 1 Hz.
Looking at data at various sampling rates was
helpful, as data which samples at too high of a
frequency will introduce noise in addition to the
signal; if the sampling rate is too low, then higher
frequencies (higher than the Nyquist Frequency)
will not be analyzable, and signal aliasing becomes
an issue. The concepts of Nyquist Frequency and
aliasing will be described further in Section 2.b.

b. Spectral Analysis Techniques

Before any analysis was conducted, the data
were first subjected to a number of quality control
checks. The first check was to throw out any data
which was flagged as ‘bad” by the anemometer.
The second check was to conduct a simple ‘sanity
check’; if there were any data points that obviously
were erroneous, these were discarded as well. The
final check was conducted through an algorithm
which computed a running average of acceleration
for all points, and if the instantaneous accelera-
tion between two points was at or above a certain
threshold and significantly differed from the run-
ning average, then it was flagged for further eval-
uation. This helped to identify multiple regions of
data where the raw velocity did not immediately
appear suspicious, but where it was determined
that the instrument could have introduced a bias.

For questionable wind speed values in the 10 Hz
dataset, the wind speed data was compared against
the meteogram for the closest Mesonet stations to
the data collection, to check for possible real me-
teorological conditions causing a sudden change
in wind speed. Because of the spatial distance
between the data collection site and the Mesonet
site, the same downburst might not hit the same
location, but the Mesonet data can be used to see
what sort of weather was in the area that day.
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Once the data were run through the proper quality
control checks, analysis of the data was conducted.
To observe the frequencies at which the signal was
obtaining most of its power, a power spectrum was
plotted for the wind speed. The first step involved
processing the speed data through a window func-
tion. This function helps to eliminate end effects
of the data by ‘weighting’ data near the center
of the time interval being analyzed. End effects
can result in spectral leakage, making the peak
or peaks of interest more difficult to see. For this
case, a Hamming window function was used, given
by the equation

2mn

w(n) =a— (1 —«a)cos (N—l) (1)
where n = index number, going from 0 to N - 1,
N = total number of samples, and the standard
a = 0.54 level was used. The « level was ad-
justed to 0.50 for some of the data, as described
in Section 3. Figure 1 shows the subtle difference
in these two window functions. These ‘windowed’
data were run through a Fast Fourier Transform
(FFT), yielding N complex outputs, with each out-
put corresponding to a different frequency. The
first half of the outputs correspond to frequen-
cies up to the Nyquist Frequency, while the 2nd
half correspond to frequencies between the nega-
tive Nyquist Frequency and 0. The Nyquist Fre-
quency, which is the highest frequency that can be
observed by the power spectrum, is given by the
equation

fNyquist = 05(f8> (2)

where f, is the sampling rate. Only positive val-
ues of frequency were used in the analysis, as the
negative frequencies should contain the same in-
formation as the positive frequencies.

Because the power spectrum can only see up to
the Nyquist Frequency, aliasing becomes a con-
cern. Aliasing is a phenomenon that occurs when
the signal’s frequency of interest is higher than
the Nyquist Frequency. The power from this sig-
nal becomes folded back into the visible power
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Fic. 1. This figure shows the two window func-
tions used; the lower graph is the Hamming, which
uses a = 0.54. The upper graph shows the
Hann, a subtle variant of the Hamming, which
uses & = 0.50. The Hann, unlike the Hamming,
sets the datapoints on the ends to 0, rather than
to 8% of their value.
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spectrum, and can look as if the power is coming
from other frequencies. In order to ensure that the
power spikes that are seen are not being aliased,
a higher sampling rate is necessary, which is men-
tioned in Section 5.

The magnitude of each output was obtained by
multiplying each output by its complex conjugate
and taking the square root. Thus, for an out-
put of a + bi, the magnitude is given by v/ a? + b2.
The magnitude represents the amount of the sig-
nal’s power given by that particular frequency.
For analysis, the power spectra were run through
a boxcar smoothing function, which attempts to
eliminate noise in the spectrum. This function
works by computing a running average over a cer-
tain number of points; for a 17 point boxcar, as
was used here, the i*" point in the smoothed graph
was computed as the unweighted average of the
(1 — 8) to (i + 8) points. Other smoothing func-
tions (triangular, etc.) could be used, but were
found to yield similar graphs as the unweighted
boxcar smoothing function. The number of points
in the boxcar smoothing function was chosen by
trial and error; 17 eliminates a significant portion
of the noise, but using more points has little effect
on the power spectrum noise level.

3. Results

Once the magnitude was calculated, it was plot-
ted against frequency to determine the frequen-
cies at which there are large, sudden increases in
power. A ‘spike’ in power at a given frequency,
X, would indicate that the sampling rate must
be at least 2X. After analyzing the data from the
Mesonet Joint Urban experiment at the full 10 Hz
and decimated versions at 5 Hz and 2.5 Hz, as
well as daily Mesonet data at % Hz and two on-
site datasets at 1 Hz, a spike was observed only
in the Joint Urban data. The spike in power in
the power spectrum came only from a small sec-
tion of data, which lasted less than an hour, where
the wind speed reached values that could possibly
be unphysical (up to 62 m/s). Outside of this

section of the Joint Urban data, no spikes were
observed, as seen in Figure 2. The data were all
analyzed in the same manner as described in Sec-
tion 2b, with the exception of the on-site data.
These data were analyzed with a special case of
the Hamming window, called the Hann window,
which uses a = 0.50 instead of a = 0.54, in order
to further negate end effects. For the on-site data,
the collection program terminated unexpectedly,
shortly after a sharp rise in wind speed. Because
it is unclear whether or not the data near the end
are good, the Hann window was used instead of
the Hamming, in order to avoid having to make
this judgment call. Aside from the different treat-
ment of the data near the beginning and end of the
dataset, there is little difference between the Hann
and Hamming window functions, and all datasets
were treated equally otherwise.

The power spectrum was plotted for each dataset
on both a linear set of axes, and on a log-y axis.
The log-y plot takes the log of the power and mul-
tiplies by 10 to obtain the power in decibels.

4. Conclusions

These preliminary results disprove the initial
hypothesis that there is a defined spike in power
which would clearly define the optimal sampling
rate. While initially a spike was observed in the
power spectrum, this contribution to the power
came only from when the equipment’s heating ele-
ment was enabled; after further analysis, this spike
at 0.1 Hz (and repeating spikes at 0.3, 0.5, and
0.7 Hz) is believed to be an artifact of the in-
strument, and not the wind. An autocorrelation
function, which is a measure of the correlation be-
tween neighboring datapoints, also shows this phe-
nomenon. During the meteorological events which
caused the increase in wind speed, the heating el-
ement on the anemometer was activated during
a few short periods of time for an unknown rea-
son. For further analysis purposes, a new dataset
was created where wind speed value in the data
entries where the heating element was activated
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Full Data Power Spectrum, 10 Hz, 17 pt Boxcar

2000

GO0

Potper
arl

2000

]

; : . 1 | T
0o 02 04 0g 0.8 1.0

Frequency (Hr)

Abridged Data Power Spectrum, 10 Hz, 17 pt Boxcar

=002

GOZ0

Fourer
&

2000

0o o2 04 0B 0.8 1.0

Frequancy (Hi)

F1G. 2. The top graph represents the power spec-
trum for the full 10 Hz wind speed dataset, while
the bottom dataset has excised 50000 datapoints
surrounding a possible meteorological event. Note
the presence of power spikes in the top graph, and
their absence in the lower graph. Both the x and
y axes are linear.

was replaced with a running average of wind speed
values in surrounding data entries; this dataset
is generally referred to as being ‘smoothed’. The
wind speeds for the full, abridged, and smoothed
datasets are shown in Figure 3.

This method eliminated the spike in power in
the power spectrum, leading to the conclusion that
the instrument could have produced the power
spike. A demonstration of this phenomenon is
shown in Figure 4.

5. Future Work

While there is no defined spike in the power at
a given frequency, an optimal sampling rate can be
determined by calculating the frequency at which
the signal’s power levels off to a constant value.
While an initial, qualitative analysis of the power
spectra has yielded an approximate value of 0.3 to
0.5 Hz where the power levels off, a more quanti-
tative analysis is necessary to determine the exact
sampling rate at which the power levels off. At
greater frequencies, the sampling does not con-
tribute more to the signal power, and can add to
the noise of the signal.

Acceleration data was assessed with the same gen-
eral techniques used for the wind speed, but fur-
ther analysis must be conducted to determine if
there is a spike in a viable acceleration power spec-
trum. From an initial periodogram, it appears
that any spikes in the speed power spectrum match
up with peaks in the acceleration power spectrum.

It has also been proposed that 10 Hz is not a suffi-
ciently high sampling rate for observing the spike
in the power spectrum. For future research on this
topic, an anemometer with a sampling rate of 60
Hz would be ideal, as decimated versions of the
data could be used if 60 Hz is too high of a sam-
pling rate.

Future analyses will also look into the color of
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Full Data Power Spectrum, 10 Hz, 17 pt Boxcar
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e el o s trum for the raw, unaltered wind speed data; the

bottom is the power spectrum from the set of wind
speed values where a running average replaces any
datapoint where the instrument’s heating element
has been enabled.

Fi1c. 3. The 3 graphs above show the wind speed
in m/s from the full dataset, the abridged dataset,
and the smoothed dataset.
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noise that is present on the power spectra. Initial
work has shown that a red (Brownian) noise phe-
nomenon appears to be present in the power spec-
trum, which results in high correlation between
one data point and its neighbors, which could be
the result of oversampling. An autocorrelation
function, used in Section 4, shows high correla-
tion between datapoints close together, yielding
the belief that red noise may be present.
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