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ABSTRACT  

 
 Convection-allowing models (CAMs) are one of the newest improvements the area of 

numerical weather prediction (NWP) has seen in the last 10 years. One of the new diagnostic fields these 
models output is updraft helicity (UH), a measure of rotation in modeled storms. Data collected from 
Storm Scale Ensemble of Opportunity (SSEO) and its individual members in 2012 is used to create proxy 
storm reports derived from UH track-like objects.  Daily probabilistic forecasts are created from the reports 
allowing for a direct comparison to the observed for that day. 2x2 contingency tables are constructed daily 
to gain insight to if UH provides a skillful and reliable probabilistic serve weathers forecast and 
understand the characteristics of the SSEO and members. Various verification metrics are calculated 
along with looking at correlation data and probabilistic outlooks to provide a fuller understanding. The 
SSEO is found to have good skill and reliability throughout the year with especially good skill in the spring 
time (March to June).   

 
  

.
1. INTRODUCTION  

 
While severe weather forecasting remains  

difficult for meteorologists, the process of verifying 
these forecasts is just as troublesome. Without 
having a meaningful method of forecast 
verification, forecasters cannot learn and improve. 
Since the first attempt of tornado forecast 
verification in 1884 by J.P. Finley, however, both 
aspects of forecasting have seen tremendous 
improvements.  

Finley’s method of verification involved a 
dichotomous forecast, answering yes or no for  
forecasted and observed events (2x2 verification). 
After Finley, others were quick to point out his 
flaws and derive their own methods of forecast 
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verification. Some have taken into account the 
difficulty of rare event forecasting, while others 
have set out to apply Finley’s methods to other 
weather phenomenon besides tornadoes (Murphy 
1996). It still remains, though, when assessing the 
quality of a forecast, numerous forecast 
verification metrics must be analyzed.  

Severe weather forecasting methods have 
been aided by the development of convection-
allowing models, numerical weather prediction 
models with the ability to develop convection and 
severe storms. Newly developed model 
parameters help minimize the amount of data 
forecasters look at when producing a forecast. 
One of these new convection-allowing model 
parameters is updraft helicity (UH).  
 Updraft helicity is a characteristic of 
rotating storms. It is mathematically defined as the 
integral of vertical vorticity multiplied by the updraft 
velocity between the 2 and 5km above ground 
layer, Kain et al. (2008). It allows forecasters to 
see simply on one map where rotating storms are 
occurring. 
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Recent work by Clark et al. (2013) has shown 
a strong correlation between updraft helicity and 
tornado tracks. However, there are other types of 
severe weather out there besides tornadoes. This 
prompts the question if UH is a useful forecasting 
method for severe weather. Sobash et al. (2011) 
used UH in probabilistic forecasting from a single 
CAM. A grid point above a certain value of UH 
was flagged as a surrogate storm report.  This 
forecast was verified against an observed 
probabilistic forecast, and was found to have 
reliability and skill. This paper extends this work 
using ensemble data and maxima from UH objects 
as surrogate reports. The data and methods will 
be discussed at more length in Section 2.  Section 
3 will provide the results of the research 
discussing the skill and reliability of this method, 
and provide insight into the characteristics of the 
SSEO and the members. Section 4 will provide a 
discussion on the main conclusions of the paper 
and possible future work. 
 
2. DATA AND METHODS 
 

a. Forecast Method 
 
The dataset used is from the approximate 

4 km grid space Storm Scale Ensemble of 
Opportunity (SSEO) with a domain over the 
central and eastern United States. 
The SSEO is comprised of 7 
individual members including the 5.1 
km Weather Research and 
Forecasting (WRF) –Advanced 
Research WRF (ARW), a time-lagged 
ARW (ARWL), the 4km National 
Severe Storms Laboratory –WRF 
(NSSL),  Nonhydrostatic Mesoscale 
Model (NMM), a time-lagged NMM 
(NMML), a NMM with a domain over 
the continental United States 
(NMMC), and  NMMB Nest (NMMB). 
The data was collected from the 
SSEO and the individual members 
from January 8, 2012 – December 26, 
2012, where only days with observed 
storms reports are in the dataset. The 
SSEO was initialized at 0 UTC and 
run out to 36 hours. From this, 
forecast hours 13 to 36 (12-12 UTC) 
were used. Updraft helicity values for 
each grid point were obtained from 
the hourly maximum value. 

To produce the proxy storm reports, UH 
track objects were created. The object is based on 
four pairings of thresholds 20 and 30, 40 and 50, 
70 and 90, and 100 and 125 m

2
s

-2
. The pairing 

thresholds were based on the thresholds used in 
the National Oceanic and Atmospheric 
Administration (NOAA) Hazardous Weather 
Testbed (HWT). The object’s lower threshold 
value is triggered when there are 4 contiguous 
pixels present, while the higher threshold is 
triggered by 2 pixels. The UH object’s maximum 
value is then found, and identified a surrogate 
storm report. This allows for a direct comparison to 
observed storm reports in forecast verification. 
Figure 1 provides a visual of this process. 

A 40km neighborhood method and 120km 
Gaussian smoother are applied to the surrogate 
storm reports to create a daily probabilistic outlook 
for severe weather. The highest percentage from 
the probabilistic outlook is recorded as the 
maximum value for the ensemble and the 
members to serve as a measure of the severity 
the model predicts for the day. For this research, 
the 15% and greater threshold is verified. 

In addition, a dataset composed of the 
ensemble and individual member’s correlation with 
the observations is used. The correlation data 
provides further explanation into the relationship 
between the forecast and observations. 

Figure 1. Example of how UH track objects 
are created 
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b. Forecast Verification  
 
A 2x2 contingency table is used to verify 

the dataset. These tables are created daily based 
on the probabilistic forecasts for the ensemble and 
individual members on a grid point to grid point 
basis. Again, for this research, the threshold for 
verification is greater than or equal to 15%. A in 
the contingency table is defined as a hit, where for 
both the forecasted and observed grid point meet  
this threshold. B is defined as a false alarm, where 
the forecasted grid point meets the threshold but 
observed is below. C is defined as a miss, where 
the observed grid point meets the threshold but 
the forecasted is below. D is defined as a correct 
null forecast, where both the observed and 
forecasted are below the threshold. Figure 2 
provides a visual explanation of the contingency 
table used. 

From the 2x2 contingency tables, various 
forecast verification metrics are calculated to 
provide insightful information on the skillfulness 
and reliability of the forecast method. Each metric 
provides a different explanation about the 
forecasting method, thus numerous metrics must 
be calculated to tell the entire story. In this project, 
the following metrics were calculated: Probability 
of Detection (POD), False Alarm Ratio (FAR),  
 

Figure 2. 2x2 contingency table used  

Frequency of Hits (FOH), Bias, Critical Success 
Index (CSI), and Hiedke Skill Score (HSS). The 
monthly mean was found by adding each A, B, C, 
and D for the month, and calculating the specified 
metric from those values. These metrics will be 
discussed in further detail in Section 3 with the 
formulas for each seen below.  

 
POD = A / (A+C) 
FAR = B / (A+B) 
FOH = 1 – FAR 

Bias = (A+B) / (A+C)  
CSI = A / (A+B+C) 

HSS = 2(AD-BC)/ [(A+C)(C+D) + (A+B)(B+D)] 
 
     
3.  RESULTS 
 

a. 2012 Analysis 
 
The number of days with a maximum 

probabilistic forecast value at or above 15% for 
each month is seen in Figure 3 (the ensemble in 
on the left hand side, and the NSSL on the right). 
Both models have their peaks in May, and see 
approximately half of the days being at or above 
the verifying threshold between March through 
June.  

Probability of Detection (POD) gives 
insight into what fraction of observed “yes” 
events were forecasted correctly. This metric 
can be increased (improved) through issuing 
a larger area or number of “yes” forecasts. 
Thus, this leads to an increase in the number 
of hits and ultimately POD. Figure4a shows 
the POD of each month’s mean plotted 
through the year. The SSEO (black) falls right 
in the middle of the members, which is to be 
expected. Some members, such as the NSSL 
and NMM, show higher POD values than the 
ensemble, while other members, such as the 
ARW and ARWL, show lower POD values. 
Interesting to see is the POD time series 
shows the seasonality of severe weather; the 
higher values in March through June as the 
primary season with the spike in September 
and October the “second” season.  
  False Alarm Ratio (FAR) gives the 
fraction of forecasted “yes” events that did 
not occur. Figure 4b shows the time series 
the FAR throughout the year. The ensemble 
has some of the lowest FAR values with only 

the ARW and ARWL members being lower. 
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Monthly Mean POD
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Figure 3. Days at or above 15% for SSEO (left) 
and NSSL (right) 
 
Members such as the NMMC and NMM 
have some of the highest FAR 
throughout the year. Consistent for the 
ensemble and all members, though, is 
the lowest FAR are seen in the primary 
severe weather season. 

Looking at the POD and FAR, 
the members with higher POD also 
have higher FAR. While on the other 
hand, the members with lower POD 
have lower FAR. Looking at the bias 
time series (Figure 4c) provides a 
further understanding into these 
findings.  The NMMC, NMM, NMML, 
and NSSL show with a bias consistently 
higher than 1 (above the bold black 
line). A bias greater than one states the 
model has a tendency to overforecast. 
When comparing Figures 4a and b with 
this, these “overforecasters” have high 
POD values and high FAR. It is 
concluded that these members tend to 
cover a larger forecast area, thus they 
are rewarded with high POD but are 
punished with a high FAR. A bias less 
than one (below the bold black line) states the 
model has a tendency to underforecast. This is the 
case with ARW, ARWL, and NMMB members. 
When comparing to Figure 4a-c, these 

underforecasting models have low POD and 
low FAR. These “underforecasters” forecast 
a smaller area, and are rewarded with a low 
FAR but punished with a low POD. A bias of 
1 states a properly sized forecast, what 
forecasters strive to attain. The ensemble 
has a relatively high POD, lower FAR, and a 
bias value hovering around 1. From this, it 
is concluded that the ensemble shows 
relative skill in this forecasting method. 

Figure4d shows the Performance 
Diagram, also known as the Roebber 
Diagram (Roebber 2009). The best forecast 
in this diagram lies in the upper right corner, 
where the forecast has a high POD, high 
FOH(low FAR) along with high CSI. The 
overforecasters are above the bias of 1 line 
with their high POD and lower FOH. They 
are covering  a larger forecast area so they 
are detecting area, but also have many 
areas that are not getting hits. The 
underforecasters, though the area they 

cover is smaller, they are still getting hits in the 
areas they are forecasting. The ensemble, though, 
has POD and FOH values that are nearly equal. 

Figure 4a. Monthly mean POD time series  
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Figure 4 (b) Monthly mean FAR time series, 
upper left (c) Monthly mean Bias time series, 
upper right (d) Performance Diagram (e) 
Monthly mean Correlation with observations 
time series 
 
 
 
 
 
 
 
 

Comparing Figures 4a-d, a compensation 
affect between the members of the SSEO is seen. 
Some members overforecast and some members 
underforecast, but together they create an overall 
decently skillful ensemble mean forecast. The 
overforecasters are toned down by the 
underforecasters, but by the same token the 
overforecasters work to enhance the 
underforecasters. Some members are picking up 
for other member’s weaknesses. By this, the 
ensemble forecast has decent POD and FOH. The 
skill of the ensemble forecast is seen in Figure 4e,  
which shows the model’s correlation with the 
observations. The ensemble has the highest 
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correlation with the observations showing the 
forecast has relative skill and reliability throughout 
the year.  
 

b. March to June Analysis 
 

Spring is the primary season for severe 
weather in the United States. Along with March to 
June having some of the highest POD values for 
the year, this span of months is also when the 
ensemble and members have relatively low FAR 
values, and contains over half of days in the 
dataset with a maximum probalistic forecast of 
15% or greater. This prompted a further 
investigation of the ensemble and member 
performance during these months, and the affect 
of compensation. 

A box and whisker plot of the ensemble 
and members maximum values is found in Figure 
5a. The median values (shown by the solid black 
line in each box) are varied from member to 
member. The NSSL and NMMC have medians 
above 0.4 with the NMM and NMML just below, 
and it important to note that these are the  
“overforecasters”. The ARW, ARWL, and NMMB 
are above the 0.2, and these are  

 
Figure 5 (a) Box Plot of member’s maximum 
values from March to June (b) Box Plot of 
member’s correlation with observations  
 
 
 

“underforecasters”. These models are exhibiting 
their influence against the “overforecasters” seen  
in the ensemble that has a maximum value 
median around 0.25. The underforecasters are 
working to dampen down the severity of the day in 
which the overforecasters predict, and bring the 
maximum probabilistic value to a lower value.  
 Figure 5b is the box and whiskers plot of 
the correlation with the observations. The 
ensemble’s median is at an impressive 0.8. While 
all the member’s correlation median is below the 
ensemble, it shows that each member holds an 
important influence in creating the ensemble 
forecast. The individual member’s forecasts alone 
could not stand as a very useful, but taking these 
7 models together in an ensemble mean shows 
predictive skill in the March through June months, 
where one would like to see the highest skill.  

 
c. August Analysis 

 
While the ensemble mean show particularly 

good skill in March through June, it must be noted 
that this skill is not consistent throughout the year. 
August sees a little over of 10% of the days at the 
threshold. The POD values are significantly lower 
than March to June at, and the FAR values are 
much high as well. Biases among the individual  
members become even more varied with the 
NMMC with a having the highest bias at about 4. 
The correlation with observations is at some of 
their lowest values for the year in August. Looking 
at Figure 4a-c and e, forecasts for August are 
being made, but they are covering the wrong 
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areas. The poor 
performance from the 
members leads to an 
ensemble mean lacking skill 
in this month. Thus, using 
the forecast would not 
provide much benefit to 
forecasters. 
 

d. Case Studies 
 

A further look into the aerial 
and maximum value 
compensation affect by 
members in March to June  
was done by using case 
studies. An outbreak day 
(April 14, 2012) and a lower 
end severe weather day 
(April 28, 2012) are 
discussed in the following 
sections. 
 
 

1. April 14, 2012 
 

On April 14, 2012, over 461 
storm reports were 
collected from Nebraska to 
the Texas Panhandle. For 
these case studies, this day 
is considered an outbreak 
day. Figure 6a shows the 
probabilistic forecasts for 
the ensemble (upper left), 
NSSL (lower left), ARW 
(upper right), and NMM 
(lower right) plotted with the 
observations plotted as 
solid grey lines overlaid on 
each plot. The ARW 
forecasts 3 areas of 
maximum value around 
30% in central Oklahoma, the northern Missouri 
and Kansas border, and Kansas. These 3 areas 
are displaced from the single observed area. The 
NMM’s maximum value forecast is higher with a 
bullseye at about 50% in southeastern Kansas, 
which is only slightly displaced from what was 
observed. The NSSL exhibits a maximum value 
bullseye in the similar area as in NMM, but is 
elongated into eastern Oklahoma. The NSSL also 
has a maximum value area that is similar to the  
 

 
Figure 6. Probabilistic forecast outlooks with 
maximum value shading (blue) and observed 
probabilistic forecast (gray lines) for the SSEO 
(upper left), ARW (upper right), NSSL (lower 
left), NMM (lower right) for April 14, 2012 (a) 
and April 28, 2012 (b) 
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ARW in western Nebraska. The ensemble picks 
up on the members’ bullseyes, producing a 
maximum value bullseye that is only slightly 
displaced from the observations in Kansas. The 
compensation affect is also seen in the forecast 
coverage area. The ARW and NSSL cover area 
into Iowa, in which the NMM lacks. This area is 
then covered in the ensemble and is verified in the 
observations. The individual members lack 
characteristics to stand alone as a good forecast 
for the day, but coming together to form a good 
ensemble forecast. Members compensate where 
other members are lacking in maximum value and 
spatial coverage to output the ensemble forecast 
with a correlation value with the observation of 
0.87. 
 

2. April 28, 2012 
 

April 28, 2012 was a lower end severe 
weather day with half the reports seen on April 14, 
2012. Figure 6b is the same as 6a, but is for April 
28, 2012. The ARW, NSSL and NMM  
all forecast two maximum values areas of severe 
weather but of different magnitudes and 
placement. The NMM’s is in southern Illinois 
highest area of maximum value is in southern 
Illinois with a lesser area extending down into 
central Texas. The southern maximum area is not 
covered while the Illinois maximum is only slightly 
displaced. The ARW forecasts a very small area in 
southern Illinois and a more potent area in the 
eastern half of Oklahoma and covers portions of 
the observed.  The NSSL forecasts proves to be 
extremely accurate hitting the two maximum value 
areas, but does overforecast by expanding the 
area covered having these two areas connected. 
The ensemble forecasts two separate maximum 
value areas, but these areas are displaced. The 
NSSL’s near perfect is brought down significantly 
when taking an ensemble mean with the other 
poor performing members. Even on a low end 
severe weather day, though, the ensemble proves 
to have some skill with a correlation value of 0.81. 
 
 
4. DISCUSSION  

 
 While a compensating affect between the 
members is expected in an ensemble mean 
forecast, it is important to understand how and in 
what ways this compensating affect is occurring. 
The NMMC, NSSL, NMM, and NMML members of 
the SSEO show characteristics of overforecasting 

(High POD, High FAR, Bias > 1). The ARW, 
ARWL, and NMMB member of the SSEO show 
characteristics of underforecasting (Low POD, 
Low FAR, and Bias < 1). These models 
compensate for each other to produce a skillful 
ensemble forecast with high POD, low FAR, the 
highest CSI (visually derived from Figure 4d), and 
the high correlations with observations. A specific 
look into spring time months (March – June) 
showed that the SSEO showed good skill over the 
span on many events.  
 However, Figures 4a-c and e, show there 
are other time frames that the ensemble mean 
does not show such strong of a skill. The month of 
August has around 20 days that are at the 
verifying threshold. Yet, this month has low POD, 
high FAR and poorer correlations with the 
observations. These facts are important to note 
when using the SSEO as a forecasting tool. More 
trust can be put into the forecast during the spring, 
but not necessarily in the summer. 

This research only touches the surface on 
the work to be done. There are many possibilities 
for future work such as looking more in depth at 
other months and days in the dataset, looking at 
influence of the removal of members from the 
ensemble, looking into the relationship between 
the members, and the inclusion of data from other 
years to create a larger sample size. 

Such further work will provide insight that 
will aid forecasters into when to use the SSEO as 
a key forecasting tool. As stated above, while the 
SSEO shows relativity good skill throughout the 
year, but there are times during the year it 
performs better and sometimes were it performs 
worse. Understanding the events (discrete 
supercells versus squall line) and conditions taking 
place in the different months would provide would 
be invaluable to forecasters in trusting forecasts 
from the SSEO, which will in turn can help better 
severe weather forecasts overall.  
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