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ABSTRACT 
Knowledge of Antarctic weather and climate processes relies heavily on models due to the lack of 

observations over the continent. The Antarctic Mesoscale Prediction System (AMPS) is a numerical model capable of 
resolving finer-scale weather phenomena. The Antarctic’s unique geography, with a large ocean surrounding a 
circular continent containing complex terrain makes fine-scale processes potentially very important features in 
poleward moisture transport and the mass balance of Antarctica’s ice sheets. AMPS currently uses the 3DVAR 
method to produce atmospheric analyses (AMPS-3DVAR), which may not be well-suited for data-sparse regions like 
the Antarctic and Southern Ocean. To optimally account for flow-dependence and data sparseness unique to this 
region, we test the application of an ensemble adjustment Kalman Filter (EAKF) within the framework of the Data 
Assimilation Research Testbed (DART) and AMPS model (A-DART). We test the hypothesis that the application of A-
DART improves the AMPS-3DVAR estimate of the atmosphere. We perform a test using a one-month period from 21 
September - 21 October 2010 and find comparable results to both AMPS-3DVAR and GFS. In particular, we find a 
strong cold model bias near the surface and a warm model bias at upper-levels. Investigation of the surface bias 
reveals strongly biased land-surface observations while the warm bias at upper-levels is likely a circulation bias from 
the model warming too rapidly aloft over the continent. Increasing quality control of surface observations and 
assimilating polar-orbiting satellite data are expected to alleviate these issues in future tests. 

 
 
  

.1. INTRODUCTION  
 
    The effect of Antarctic processes on the rest of 
the world with impending climate change has been 
a cause for concern as about 90 percent of Earth’s 
fresh water (Mayewski et al. 2009) is contained in 
Antarctica’s massive ice sheets. The Antarctic 
Peninsula, along with a few other areas over the 
continent have experienced temperature increases 
(Turner et al. 2005), heightening concerns with 
regard to the fate of the ice sheets. This has 
motivated the scientific community to better 
understand the impacts of Antarctic processes on 
the rest of the world, as the melting of the ice 
sheet will result in substantially higher sea levels. 
Knowledge of the factors that affect the mass 
balance of the ice sheet will aid in the prediction of 
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future climate change events (Mayewski et al. 
2009). 
    Unlike the Arctic, there are less people living in 
and around Antarctica, making the need for 
observations less of a necessity. However, the 
lack of observations severely impacts our 
understanding of Antarctic weather and climate. 
Furthermore, these few observations are not 
evenly dispersed around the continent (Jung et al. 
2013). Most observations of Antarctica are 
obtained through automated weather stations 
(AWS), radiosondes, satellite winds, and marine 
observations from passing ships.  
    To aid in the forecasting for scientific research 
flights into the Antarctic, the Antarctic Mesoscale 
Prediction System (AMPS) model was developed 
by the National Center for Atmospheric Research 
(NCAR). It is currently the only routinely-run 
mesoscale modeling system, providing valuable 
insight into mesoscale and synoptic processes 
occurring in and around Antarctica (Powers et al. 
2003). It is important to understand these finer-
scale processes in the Antarctic because these 
processes may be significant factors in the 
poleward transport of moisture, and thus impact 
the mass balance of the ice sheet. The AMPS 
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model uses a three-dimensional variational data 
assimilation system (3DVAR) (Barker et al. 2004) 
to initialize model simulations that are performed 
twice daily. While AMPS has been revolutionary 
for Antarctic weather prediction, the 3DVAR 
method has some limitations. The primary 
limitations are that it does not utilize flow-
dependent information, and it does not provide an 
estimate of the uncertainty in a given analysis 
state or forecast. On the other hand, models using 
Ensemble Data Assimilation (EnsDA) generally 
outperform models using 3DVAR and are better-
suited for data-sparse regions (Whitaker et al. 
2009). Given these previous findings, it is 
reasonable to expect that an ensemble approach 
may lead to improvements in AMPS.  
    In this study, we use an ensemble data 
assimilation approach to test the hypothesis that 
an ensemble data assimilation improves the 
analysis estimates of the Antarctic and Southern 
Ocean currently provided with AMPS. We perform 
our test for a month-long period from 21 
September – 21 October. This period is motivated 
by the concurrence of the Concordiasi intensive 
observation period (IOP)-a joint project between 
the France and the United States. Gondolas were 
deployed in upper-atmospheric levels that drifted 
with the atmospheric circulation. From these 
gondolas, dropsondes were launched periodically, 
providing a unique opportunity to collect vertical 
columns of data over the data-sparse Southern 
Ocean and Antarctic continent (Rabier et al. 
2010). Observations of the vertical atmospheric 
state from Concordiasi provide an independent 
source for which our modeling results can be 
evaluated. 
    The remainder of this paper is as follows. A 
description of our model and our method used to 
examine our hypothesis is found in Section 2. Our 
results are discussed in Section 3,and our 
conclusion and potential future work is listed in 
Section 4. 
 
2. Methods  
  
    We use the ensemble adjustment Kalman Filter 
(EAKF) (Anderson 2001) implementation within 
the Data Assimilation Research Testbed (DART) 
(Anderson et al. 2009) framework using 96 
ensemble members, and we subsequently refer to 
this data assimilation system as “A-DART.” We 
obtain our initial conditions for our very first model 
run from the Global Forecasting System (GFS) 
(EMC 2003) model on 21 September 2010 at 00 

UTC and subsequently cycle solely using the 
AMPS model within the DART framework for our 
initial conditions for the remainder of the 
experiment ending on 21 October 2010 at 00 UTC. 
The A-DART system uses a smaller number of 
observations (~40,000) compared to AMPS-
3DVAR (several million) since AMPS-3DVAR is 
re-initialized from GFS each iteration utilizing all 
observations assimilated in the National Centers 
for Environmental Prediction (NCEP) global data 
assimilation system. The A-DART model uses a 
horizontal grid spacing of 45 km with 44 unevenly-
spaced vertical levels. A time step of 144 seconds 
is used, and we output data at a frequency of 6 
hours. The various physics schemes incorporated 
in A-DART include:  WRF Single-Moment 5-class 
(WSM5) microphysics (Hong et al. 2004), Rapid 
Radiative Transfer Model (RRTM) longwave 
radiation (Mlawer et al. 1997), Goddard shortwave 
radiation (Chou and Suarez 1994), Monin-
Obukhov surface layer physics(Paulson 1970; 
Dyer and Hicks 1970; Webb 1970), Noah land 
surface model (Chen and Dudhia 2001), Mellor-
Yamada-Janjic boundary layer scheme (Janjic 
1994). 

    A way to evaluate an ensemble model’s 
performance is the use of the analysis increment 
 
            (1)  

 
where  is the analysis of variable ,  is the 
background of variable ,  is the Kalman gain 
matrix,  is the observation of variable , and 

 is an interpolation of the background’s 
state from model space to observation location. A 

Fig. 1 A schematic representation of the analysis increment.  
 is the analysis of variable ,  is the background (6-h 

forecast ) of variable  and  is the observation of variable 
.  The analysis increment (  - ) is represented as the 

analysis minus the background, indicated by the arrow 
pointing down (colored red). Model bias is indicated by the 
arrow pointing up (colored blue). 
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more visual representation is shown in Figure 1.  
We apply this diagnostic to evaluate the 
performance of A-DART. For example, (1) 
quantifies the impact that observations have on 
short-term AMPS-3DVAR model forecasts at each 
output time. A smaller analysis increment implies 
there is a low model bias, since the observations 
in that case are not substantially changing the 
model’s background estimate of . Conversely, a 
large analysis increment implies the model’s 
estimate of  is relatively different than 
observations, implying that there is a large model 
bias. Furthermore, in a well-calibrated ensemble 
where observations are unbiased and the spread 

of the ensemble represents the true variance of 
the state, the analysis increment will remain nearly 
steady between data assimilation cycles.  
    If observations are unbiased, the analysis 
increment,  is equivalent to the negative 
of the model bias,  (Recall Fig. 1). 
Therefore, the analysis increment provides a 
method to diagnose model bias. Knowledge of the 
model bias can help identify weaknesses in the 
model so that tests can be performed to further  
isolate possible deficiencies in the model’s 
physical parameterizations.  
    The analysis increment of temperature at the 
first model level for both AMPS-3DVAR and A-
DART (Fig. 2) show that A-DART surface 
temperature has less of a bias than that of AMPS. 
Note that observations are not evenly dispersed 
throughout the domain, and in particular, most 
observations are in lower latitudes (equatorward of 

45°S) and are primarily atmospheric motion 
vectors from geostationary satellites. 
     
3.  Results 
 
    The vertical profile of the ensemble mean model 
temperature bias with respect to radiosonde 
temperature and root-mean square error (RMSE) 
from 45-90°S shows comparable biases between 
A-DART, AMPS-3DVAR, and GFS (Fig. 3). The 
RMSE of A-DART is larger than AMPS-3DVAR 
and GFS, however the patterns are similar with 
peak RMSEs around 250 hPa and at the surface. 
A-DART has a substantial negative bias at the 
surface, much larger in comparison to GFS and 
AMPS-3DVAR. There is a positive temperature 
bias at all levels above 400 hPa, which is also 
present in AMPS and GFS. To understand the 
reasons for these biases, we next focus our 
diagnostics where the biases are largest: near the 
surface (1000 hPa) and aloft (300 hPa).  
    One way to determine whether the A-DART 
ensemble is representing the spread of the true 
state is to compute rank histograms. A rank 
histogram evaluates the probability that a 
particular observation will fall within an ensemble  
spread. Ensemble members are separated into 
“bins” by sorting them by their value. A good 
ensemble will exhibit a flat, or uniform shape, 
implying that each ensemble member has an 
equal probability of matching the observed value. 
A U-shaped or inverted-U-shaped distribution 
implies the ensembles have too little spread or too 
much spread, respectively. A negatively 

Fig. 2 The analysis increment of temperature at model level 1 
for (left) AMPS and (right) A-DART. Locations of observations 
are overlaid with the observation types listed in the legend 
below each panel. Blue (red) shadings represent areas of a 
negative (positive) analysis increment with a contour interval of 
0.1 K. 

Fig. 3 Vertical profile of the mean model bias and RMSE 
with respect to radiosonde temperature.  Averages are 
computed from 21 September to 21 October 2010. Solid 
(dashed) lines indicate the model bias (RMSE).  Blue lines 
correspond to A-DART, red lines correspond to, AMPS, and 
black lines correspond to GFS is black. 
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(positively) skewed pattern indicates a cold (warm) 
model bias. 
 

a. Surface bias 
  
    At the surface, land surface temperatures are 
frequently outside either end of the range of the A-
DART ensemble members, resembling a U-shape 
(Fig. 4). This pattern in the rank histogram is an 
indication that the spread of the A-DART 
ensemble is too small. There is also a slight 
tendency for observations to be slightly colder 
than the ensemble. Note that radiosonde 
temperatures around 1000 hPa are warmer than 
the ensemble mean (Recall Fig. 3), however it is 
unclear whether the cold land surface temperature 
observations derive from stations at higher 
altitudes. These factors imply that the observation 
error covariances are not representative of the 
true instrument values. The AWS altimeter 
observations show a similar pattern as the land 
surface temperatures in that the values tend to fall 
outside the range of the ensemble members, 
though they do not have a prevalent cold bias. 
Overall, by examining different observations at or 
near the surface, it is clear that our observations 
need to be re-calibrated in order to reduce A-
DART surface temperature bias. 
 

b. Upper-level bias 
 
 
    Given the warm temperature bias aloft (Recall 
Fig. 3), and the fact that observations are not 
evenly distributed as a function of latitude, we 
hypothesize that the model is erroneously 
warming temperatures aloft over the continent, 
such that it weakens the net upper-level 
atmospheric circulation. In the upper levels, there 
are apparent strong wind biases associated with 
A-DART, compared to AMPS-3DVAR and GFS. 
The u-wind component becomes increasingly 
negative with height (Fig. 5) throughout the entire 
profile. However, the v-wind component remains 
strictly positive with height (Fig. 5). The wind bias 
evident in Figure 5 is primarily with respect to 
geostationary satellite data in lower latitudes, while 
the temperature bias from Figure 1 is primarily 
from radiosonde data over the continent. 
Together, the vertical bias profiles support the 
hypothesis that a large-scale circulation bias may  
be occurring in the upper atmosphere in the A-
DART ensembles. 

    Over the South Pole, we expect to see relatively 
cold temperatures with respect to lower latitudes, 
such that there is a low-pressure system aloft over 
the continent that defines the larger-scale 
Southern Hemisphere polar vortex. A warm 
temperature bias suggests that the low pressure 
over the continent is too weak (Figure 6). In the 
event the aforementioned is true, we would expect 
to see a specific pattern when looking at the 
analysis increments for u- and v-wind components 
since these observations are located along the 
periphery of the Southern Hemisphere polar 
vortex: positive values for u-wind near the top with 
negative values for u-wind near the bottom and 
positive values for v-wind on the left with negative 
values for v-wind on the right (Figure 7). This 
corresponds to a color pattern shown in the figures 
as well, with reds on the top and left of the 
domains, and blues on the bottom and right of the 
domains. We also see a possible relationship 
between the satellite wind observations and the 
strength of the analysis increment, as areas with 
more observations have a stronger analysis 
increment than areas with fewer observations 
which may imply that our satellite data quality is 
poor. 

 
 
 

Fig. 4  Rank histogram of (left) land surface temperature  
and (right) Automated Weather system altimeter 
observations within 45-90° 

Fig. 5 Vertical profile of model  (left) u-wind component and 
(right) v-wind component bias with respect to radiosonde wind 
components. The A-DART ensemble is represented by blue, 
AMPS by red, and GFS by black. 
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4. Discussion and Conclusion 
 
    The desire to understand finer-scale processes 
in the Antarctic has motivated the use of an 
ensemble data assimilation method (EAKF) over a 
traditional data assimilation method (3DVAR). The 
3DVAR approach tends to be limited in that it does 
not provide an estimate of uncertainty in a 
forecast. In previous studies, such as that done by 
Whitaker et al., (2009), show that ensemble data 
assimilation generally outperforms 3DVAR. When 
looking at results for AMPS-3DVAR, Bromwich et 
al. (2005) explained that AMPS was prone to the 
Antarctic topography leads to AMPS model bias, 
especially near coastal surface observation 
systems. After evaluating biases near the surface 
with an ensemble approach, these types of results 
are still prominent, implying that while some of the 
errors may be fixed, there is still some sort of bias. 
Bromwich also explains that model forecasts tend 
to improve with height, which counters the results 
obtained here with A-DART. While A-DART, 

AMPS-3DVAR, and GFS generally perform fairly 
well with respect to temperature until near the 400 
hPa level, all three analyses have a warm 
temperature bias above 400 hPa. It is likely that 
surface observations may be the cause of this. 
After a rigorous examination of the analysis 
increment and its relationship with model bias, and 
after examining this warm bias aloft, the possible 
issues with biased surface observations and too 
little ensemble spread is possibly contributing to a 
strong cold model bias near the surface. In turn, it 
is evident that there is a warm temperature bias 
aloft in the AMPS model over the Antarctic 
continent, which leads to a potential large-scale 
circulation bias. 
    It is important to note that the Southern 
Hemisphere experiences a reduction in ozone in 
the Southern Hemisphere polar vortex beginning 
in August and maximizing in October. This is the 
case in 2010, with the peak ozone loss occurring 
around 1 October (de Laat and van Weele, 2011). 
The AMPS model has a fixed ozone 
concentration, therefore making it likely that A-
DART overestimated the amount of ozone. Since 
ozone is a strong absorber of solar radiation, this 
would make it plausible that there was too much 
shortwave radiative heating aloft, resulting in the 
warmer temperatures in the polar vortex.  

Fig. 6 A diagram illustrating the hypothesized circulation of 
the large-scale Southern Hemispheric polar vortex and its 
expected bias on a single upper-atmospheric level.  is the 

analysis of variable  and  is the background (6-h 

forecast ) of variable .  The red (blue) arrows represent the 
analysis increment (model bias).  The text “Red U”, “Blue U”, 
“Red V”, and “Blue V” highlight the pattern and locations of 
what we expect to find in the analysis increment as 
described in the text.  For example, “Red U” means that we 
expect to find a positive analysis increment in the u-
component wind toward the top of the figure.  The analysis, 
background, and analysis increments all indicate a clock-
wise flow around the South Pole (as indicated by the arrow 
directions). The model bias (the negative of the analysis 
increment) is indicated by the smaller arrows pointing in a 
counter-clockwise direction around the South Pole, 
indicating that the bias is representing a high-pressure bias 
over the pole.  
 

Fig. 7 The analysis increments for (left) u-  and (right) v-wind 
components for A-DART at model level xxx (near 300 hPa) 
with the satellite wind observation locations plotted. Blue 
(Red) shadings represent areas of a negative (positive) 
analysis increment with a contour interval of xxx meters per 
second.  The u-wind component (left) analysis increment 
shows the color red towards the top of the domain with blue 
towards the bottom, indicating a positive analysis increment 
at the top with a negative analysis increment at the bottom. 
Similarly, the v-wind component (right) analysis increment 
shows red on the left side of the domain with blue on the 
right side of the domain, implying positive analysis increment 
values on the left and negative values on the right. The 
yellow dots indicate the locations of satellite wind 
observations. 
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    In order to alleviate model bias aloft near the 
pole, we propose to incorporate additional 
observations over the Antarctic continent (such as 
MODIS and AVHRR polar orbiting satellite wind 
observations), as well as observations obtained 
through from the Concordiasi IOP. Surface biases 
will most likely be alleviated once the A-DART 
ensemble is calibrated to best incorporate 
unbiased observations while ensuring that strict 
quality control checking removes the proper 
observations that may degrade the analyses. 
While future work on this is needed to verify this 
hypothesis, these steps are necessary and show 
promise for obtaining reasonable probabilistic 
analyses and forecasts of the atmosphere over the 
Antarctic.  
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