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Abstract

Wind energy is a rapidly growing source of energy for the United States, but there
are still technical problems to resolve before it can become the major source of energy
production. One of the biggest problems with land based wind farms is minimizing wake-
turbine interactions within a constrained space and thus maximizing power. When wind
blows through a turbine’s blades, a choppy, turbulent wake is created that interferes
with the ability of nearby turbines to produce power. Research has already been done
on finding ways to model wind farms and place the turbines in a way that minimizes
wake-turbine interactions, but current methods are either computationally intensive or
require proprietary software. I present a modified genetic algorithm that is able to pro-
duce optimized results in a relatively short amount of computation time. The algorithm
presented is able to make use of the computation power of graphical processing units and
multiple processors and by doing so produces results much quicker than an algorithm run
sequentially on a single processor.

1 Introduction

Wind energy is currently the fastest grow-
ing energy sector in the United States and
has the potential to become a major pro-
ducer of electricity on par with fossil fuels[7].
The Department of Energy has announced
it would like 20% of the power made in the
United States to come from wind energy by
the year 2030 [7]. It is feasible the United
States could reach the 20% goal in the in-

tended time period, but much research still
needs to be done to make wind energy a
more viable option as a large scale source
of electricity. There are a number of tech-
nical and societal issues with wind energy;
however, one of the most daunting is op-
timizing wind farms to produce the most
amount of power for the cheapest cost given
constraints on size of the wind farm and a
given budget to construct the farm. When
the wind blows through a turbine’s blades
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it creates a turbulent volume of air called
the wake. The turbulent air in the wake
is unable to generate as much power as a
laminar wind, so wind farm companies want
to minimize the wake-turbine interactions in
order to maximize power production. The
computation time to find a layout that min-
imizes wake-turbine interactions is immense
and scales logarithmically with the number
of turbines on the farm. Minimizing wake-
turbine interactions, and therefore maximiz-
ing power, is akin to solving the well-known
traveling salesman problem, a combinatorial
optimization problem. The wind farm lay-
out problem (WFLOP) is considered to be
a Nondeterministic Polynomial Time (NP)
Complete problem, which means the time
to calculate a solution is T (Nt!) where Nt

is the number of turbines and T is a func-
tion of time. NP Complete problems are
characterized by the fact no fast solution to
them is known. With modern computational
power, moderately sized versions of NP com-
plete problems can take billions or trillions
of years to compute. Past works have looked
at finding a heuristic, or approximate, solu-
tion to the WFLOP. One heuristic model,
the Genetic Algorithm, has been used to cal-
culate the WFLOP, but due to computation
limits, past implementations have had to as-
sume a stable wind from a single direction
among other simplifications. In this paper
the author present a Genetic Algorithm that
has been vectorized and modified so that it
can run across multiple processors. By us-
ing multiple CPUs complex calculations may
run simultaneously instead of sequentially,
drastically decreasing computation by scal-
ing the time to solve the problem with the
number of processors available.

Researchers have taken many different ap-

proaches to solving the WFLOP; however,
those focused around a heuristic model have
produced accurate results in the shortest
computation time. Minguez et al[6]. used
a local search algorithm with a heuristic
global search. An evolutionary model was
presented by Kusiak and Song [3]. Eroglu
and Seckiner used an ant colony algorithm to
model the WFLOP [2]. Mosetti et al. used a
genetic algorithm to minimize turbine wake
interactions[5].

Section 2 introduces the Wind Farm Lay-
out Problem, how power is produced by
wind farms, and power adjustment as a
result of the wake loss model. Next the
model’s parameters are introduced, the dis-
cretization of wind speed and direction is ex-
plained, and the constraints for the model
are presented. In section 4, the optimiza-
tion problem is presented and the simple and
modified genetic algorithms are introduced
in detail. The results are presented in sec-
tion 5 along with the difference between the
two cases modeled. Section 6 interprets the
data introduced in section 5 and evaluates
the models presented against those in liter-
ature. Finally, in section 7, the implications
of the model are presented and considera-
tions for future work with the model are pre-
sented.

2 The Wind Farm Layout
Problem

The WFLOP is a complex optimization
problem, and some assumptions were made.
Enumerated below are the assumptions and
parameters used in the model.

1. Wind farm designers often have a set
number of turbines planned for a wind
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farm, so in this model the number of
turbines, Nt, is held constant.

2. The wind farm is a square of dimen-
sions 2047 by 2047 meters. The bound-
ary size of the farm is consistent with
real wind farms and the number 2047
was chosen because it is easiest to store
the location of the turbines as binary
data; however, the model allows for easy
changes in the boundary conditions of
the wind farm.

3. The location of a wind turbine is defined
by its cartesian coordinate after its loca-
tion has been decoded from the binary
population.

4. All wind turbines on the farm share
the same parameters (i.e. the rated
power, power curve, thrust coefficient,
model, hub height, cut in speed and
cut out speed remains constant between
turbines).

5. For any location, height, or direction on
the wind farm the wind speed, v, fol-
lows a Weibull distribution modeled by
eq(1).

pv (v, k, c) =
k

c

(v
c

)k−1
e−( vc )

k

(1)

where Pv(v, k, c) is the probability den-
sity function, c is the scale parameter,
and k is the shape parameter.

6. The wind direction is based off a prob-
ability from data of a nearby location
to the wind farm. Where 0◦is the east-
ern most part of the farm and 90◦is
the northern most portion of the farm.

Wind speed is t a function of wind direc-
tion θ, therefore k = k (θ) and c = c (θ)
for 0◦ ≤ θ ≤ 360◦.

7. Finally the wind turbines must be
placed within the boundaries of the
wind farm and no two turbines may be
placed within 4 rotor diameters of each

other or
√

(Ni)
2 + (Nj)

2 ≥ 4D, i, j =
1, 2, ..., Nt, i 6= j.

2.1 Power Production

The power produced by the wind farm is the
total sum of all power from each individual
turbine. Kusiak and Song show that the ex-
pected wind output of a single turbine can
be modeled by eq(2) [3].

E(P, θ) =

∫ ∞
0

f(v)pv(v, k(θ), c(θ))dv

=

∫ ∞
0

f(v)
k(θ)

c(θ)

(
v

c(θ)

)k(θ)−1
e
−
(

v
c(θ)

)k(θ)
dv

(2)

Where f(v) is the power curve of turbine
i.

A fully optimized wind farm will produce
the maximum amount of power possible by
the number of turbines present or Power =
Nt ∗Prated. Therefore the objective function
of the model can be defined by eq(3).

max(

Nt∑
i=1

E(Pi)) (3)

Finally we can linearize the power curve
of the wind turbine with a tolerable error.
Eq(4) shows a piecewise function describing
the new power curve of the wind turbines.
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f(v) =


0, v < vcut−in

λv + η, vcut−in ≤ v ≤ vrated
Prated, vcut−out > v ≥rated

0, v > vcut−out

(4)

If the wind speed is below the cut in speed,
v < vcut−in, of the turbines the power pro-
duced is 0, while if the wind speed is between
the cut in speed and the rated speed of the
turbine, vcut−in < v < vrated, the power pro-
duced is described by the equation λv + η.
If the wind speed is greater than the rated
speed of the turbine but less than the cut out
speed, vrated < v < vcut−out, then the tur-
bine is able to produce its maximum power,
the rated power of the turbine Prated. Fi-
nally, if the wind speed is greater than the
cut-out speed of the turbine, v > vcut−out,
the turbine will lock the blades to prevent
damage to the turbine and the turbine will
produce 0 power. The turbines in the model
presented have a cut-out speed of 25m/s.

2.2 The Wake Loss Model

Turbines on an actual wind farm are sub-
ject to power loss by wake-turbine interac-
tions. The wake model chosen is the same
model described in Kusiak and Song’s paper
and does not require computational fluid dy-
namics (CFD) solvers [3]. The wake model
was chosen because the it is able to effi-
ciently produce accurate wake interactions
[3]. When a laminar flow of wind blows
through the first row of turbine’s blades a
turbulent flow of air, the wake, is created.
The wake is a function of the wind direc-
tion and speed; therefore, when modeling
the wake effects it is important to calculate
the wake deficiencies in order of the most

upstream turbine to the most downstream
turbine with relation to wind direction.

When calculating the velocity deficiency
of a single turbine as a result of the wake of
a single other turbine eq(5) is used.

velDeficitij = 1− vdown
vup

=
1−
√

1− Ct
(1 + kd

R )2

(5)
velDefij is the velocity deficit created at

turbine i by the wake of turbine j. vup is the
velocity of the laminar wind flow and vdown
is the velocity of the wind after the wake
effects have been considered. Ct is the thrust
coefficient of the turbine, k is the wake decay
constant, d is the distance between turbine
i and turbine j as a projection along with
wind direction and R is the radius of the
wind turbine rotor.

The total wake loss at a turbine i is the
sum of the individual wake losses turbine i
experiences for all turbines i is within the
wake of. eq(6) models the total wake loss at
turbine i.

velDeficiti =

√√√√ N−t∑
j=1,j 6=i

V elocityDeficit2ij

(6)

3 The Computational Model

The wake model described by eq(6) and the
power model described by eq(4) and eq(3)
were used to simulate the wind farm. When-
ever the model calculates the power output
of the farm it must first sort the turbines
from most upstream to most downstream
along a vector projection of the wind direc-
tion. Next the model checks to see if turbine
i is in the wake of all turbines j = 1, 2, ..., Nt
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that are upstream of turbine i using eq(7)
from Kusiak and Song[3].

βij = cos−1
{

(xi−xj)cosθ+(yi−yj)sinθ+R
k√

(xi−xj+R
k
cosθ)2+(yi−yj+R

k
sinθ)2

}
(7)

if βij < α where α = arctan(k), then turbine
i is within the wake of turbine j.

Once the model checks to see if turbine i
is within any of the wakes created by the up-
stream turbines, the wake deficit of turbine
i from each turbine upstream is calculated
using eq(6) and by using eq(2) and eq(4) we
can calculate the power at a single turbine.
Finally we use eq(3) to calculate the total
power of the wind farm

3.1 The Modified Genetic Algo-
rithm

The genetic algorithm is a form of evolu-
tionary programming that optimizes a func-
tion through manipulation of a popula-
tion. The flow chart below shows an out-
line of how the genetic algorithm works

Figure(1)

The first step is to create an initial popu-
lation by randomly filling an G x Nt matrix
with binary data. In the case of this pa-
per G, or the row vector referred to as the
genome, is of length 22 and Nt equal to the
number of turbines. The binary data stored
in each row of the matrix is the location of
an individual turbine.

After the initial population has been cre-
ated the fitness of the first population is
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checked. The fitness function in the model
presented is simply the amount of power
produced by the wind farm as a whole.
To evaluate the fitness function, the binary
data in each row of the population matrix
is converted to cartesian coordinates, the
wake interactions are computed and finally
the power of each turbine is calculated and
summed as the total power of the farm.

Next the population goes through the se-
lection stage. During the selection stage
members of the population are chosen, based
on their fitness, to mate with one another.
In this paper a roulette selection was used.
With a roulette selection the chance a single
member of the population will be chosen to
reproduce is directly proportional to how fit
the population member is compared to the
rest of the population. Eq(8) describes the
fitness probability of any turbine i.

Selection =
FitnessTurbinei∑Nt
i=1 FitnessTurbinei

(8)

Next the crossover, or reproduction, stage
occurs. During this stage members of the
population combine DNA, or bits of data
from their genomes, to produce an offspring
that has some similarities to its parents. For
the model presented a uniform crossover was
chosen, as it performed best during initial
testing of different crossover types. In a uni-
form crossover 50% of the data for the off-
spring is chosen from each of the two par-
ents. A function randomly selects half of
the bits in parent 1 and the other half of the
bits from are chosen from parent 2. The two
groups of bits are recombined to create the
offspring’s DNA (the binary representation
of the turbines cartesian coordinates).

The mutation stage is important because
it helps the genetic algorithm to avoid con-
verging on local extrema. During the mu-
tation stage bits are randomly flipped from
their current value to the opposite value
(e.g. a 1 becomes a 0 or a 0 becomes a 1).
The chance for mutation is a predetermined
value, in the case of the model presented in
this paper 0.25 was used.

During the iterations of the model if the
fitness of a population ever comes within the
acceptable boundaries set by the user the
model will stop, otherwise the model will
continue to run until it meets its iteration
limit. The model presented is implemented
with iteration count being the only stopping
criterion.

Finally for the the WFLOP a parallelized
and vectorized version of the genetic algo-
rithm was implemented. By parallelizing the
wake model of the wind farm, one is able to
take advantage of a multi-processor system.
Parallelization of the problem allows calcula-
tions of multiple parts of the wake deficiency
to be calculated at the same time. Vectoriz-
ing the code also dramatically speeds up the
model by avoiding for loops and instead re-
lying on speedy matrix operations.

3.2 Discretization Of Wind

The wind direction and speed were dis-
cretized into small bins in order to cut down
on computation time. For the model pre-
sented wind was broken down into 16 22.5◦

increments and wind speed was divided into
20 intervals of 0.5 (m/s). By discretizing the
wind speed and direction the model is able
to evaluate the power created by using sum-
mations instead of a continuous integral.
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3.3 Model Parameters

In order to stay consistent, the same pa-
rameters Kusiak and Song used were cho-
sen for the model runs. The rotor radius
is 38.5(m); cut-in speed is 3.5(m/s); rated
speed is 14(m/s); rated power is 1500 (kW);
For the linear power curve function, λ =
140.86, ν = −500. Hub height is 80 (m).
The thrust coefficient Ct is assumed to be
0.8, the spreading constant k is assumed to
be 0.075 for land cases [3].

4 Results

The model chosen was the modified Genetic
Algorithm. The model was run 10 times for
a case with 100, 200, 500, 1,000, and 2,000
turbines. The model was run with 100 iter-
ations for each case. The genetic algorithm
specific parameters were held constant be-
tween runs. The genome length of the pop-
ulation was 22 and the mutation chance was
0.25.

Figure(2) shows a plot describing the dif-
ference between efficiency and the time re-
quired to computer the model. Efficiency
is determined by equation(9) where the
TheoreticalMaxPower is Prated ∗ Nt, or
the TheoreticalMaxPower is defined as the
maximum power each turbine could produce
at wind speeds of vrated and neglecting any
wake interactions.

max(
∑Nt

i=1E(Pi))

TheoreticalMaxPower
(9)
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5 Discussion

The algorithm presented was able to pro-
duce relatively optimized wind farms for a
large number of turbines within small space.
The computation time for even the 2,000
turbine case is not unreasonable. The com-
putation time needed to calculate an opti-
mized layout increases rapidly as the num-
ber of turbines (Nt) is increased. The al-
gorithm performed very well for the cases
involving a large number of turbines; how-
ever, given the wind farm size constraints,
the algorithm most likely could have found
a more optimal layout for the 100 and 200
turbine cases. The randomness of the place-
ment of the turbines means that for 100 or
200 turbine cases it might be possible to
achieve 100% efficiency, but the genetic al-
gorithm was unable to do so; however, for
the 500, 1,000, and 2,000 turbine cases the
genetic algorithm performed very well and
produced surprisingly efficient layouts given
the changing wind directions. The algorithm
seems to have promising potential in real life
applications of wind farms. All code was
written in Matlab 2013a and run on a com-
pute with a 2.3Ghz i7 Intel processor with
16gb of ram.
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6 Summary and Conclusions

A modified genetic algorithm using vector-
ized code and included a parallelized wake
scheme was presented in this paper for an
inland wind farm hosting a varied number
of turbines. The model presented was able
to produce efficient wind farm layouts for a
large number of turbines despite the small
space the farm was constrained to. The
presented algorithm is robust and flexible
enough to incorporate more advanced or ac-
curate wake models in future studies. With
the current, simplified, wake model, the al-
gorithm was able to find globally optimized
solutions within a reasonable time frame.
Due to the random nature of heuristic algo-
rithms, the genetic algorithm is some what
inconsistent with its layouts; however, the
efficiency of the wind farms over 10 runs of
the algorithm is very promising.

In conclusion, the algorithm presented
was able to produce efficient solutions to
the WFLOP for a larger number of turbines
than had been presented by other heuris-
tic solutions in literature. Future works on
the model might include a varying number
of turbines with a second objective to min-
imize cost of the overall wind farm, or a
more complex implementation of the wake
model based off of computational fluid dy-
namics solvers. The model could also be run
with considerations to geographic changes in
height, or with considerations to terrain with
obstacles preventing placement of turbines
within the boundary of the wind farm and
may produce more realistic modeling for real
life wind farms.
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