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ABSTRACT 
 

Previous work shows that the Rapid Refresh (RAP) model severely under-represents ice pellets 
in its grid, with a skill near zero and a very low bias. An ice pellet diagnostic upgrade was devised at the 
Earth System Research Laboratory (ESRL) to resolve this issue. Parallel runs of the experimental ESRL-
RAP with the fix and the operational NCEP-RAP without the fix provide an opportunity to assess whether 
this upgrade has improved the performance of the ESRL-RAP, both for the models overall and for 
individual precipitation types, using the meteorological Phenomena Identification Near the Ground 
(mPING) project as verification. The overall Gerrity Skill Score (GSS) for the ESRL-RAP is improved 
relative to the NCEP-RAP at 3 hour lead time but degrades with increasing lead time, a difference which 
is statistically significant but may not have much practical significance. Some improvement was found in 
the bias and skill scores of ice pellets and snow in the ESRL-RAP, although the model continues to 
under-represent ice pellets, while rain and freezing rain were generally the same or slightly worse with the 
fix. The ESRL-RAP was also found to depict a more realistic spatial distribution of precipitation types in 
transition zones involving ice pellets and freezing rain. 

 
  

. 1. INTRODUCTION 
 

Forecasting precipitation types is often a 
significant challenge for forecasters. Considering 
the significant societal impacts that winter 
precipitation can inflict, correctly forecasting these 
precipitation types is crucial. As an aid, forecasters 
often refer to numerical weather prediction models 
for an approximation of the spatial distribution of 
potential precipitation types. Unfortunately, 
modeled precipitation types remain imperfect. 

Previous studies examine modeled 
precipitation type verification against surface 
observations. For example, Ikeda et al. (2013) 
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verifies the skill of the High-Resolution Rapid 
Refresh model (HRRR) for predicting precipitation 
types, using the Automated Surface Observing 
System (ASOS) network as surface observations, 
and concludes that the mixed precipitation 
transition zones has lower performance scores 
than rain or snow. This study is limited by its 
usage of the ASOS network which can be spatially 
sparse outside of metropolitan areas; additionally, 
as out of the 852 ASOS stations throughout the 
US, only 15% are able to report ice pellets, further 
limiting the size of the observation dataset (Elmore 
et al. 2015). 
 More recent studies on precipitation type 
verification have incorporated observations from 
the meteorological Phenomena Identification Near 
the Ground project (mPING, Elmore et al. 2014). 
mPING is a mobile application used to 
crowdsource precipitation type observations from 
the public, where users can select various 
precipitation types including the following: none, 
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hail, drizzle, freezing drizzle, rain, freezing rain, ice 
pellets, snow, rain and snow, rain and ice pellets, 
and ice pellets and snow. Since its launch on 19 
December 2012, over 896,000 individual reports 
have been submitted to mPING as of July 2015. 
As observations can be submitted from any 
location at any time, mPING provides a network of 
spatially and temporally dense precipitation type 
observations, which is especially useful during 
cases of highly localized variability in precipitation 
types. 

Elmore et al. (2015) utilizes mPING 
observations in 2013 to verify forecast 
precipitation types for the North American 
Mesoscale Forecast System (NAM), the Global 
Forecast System (GFS), and the Rapid Refresh 
(RAP) models. The study similarly shows that 
forecast skill for ice pellets and freezing rain is 
substantially lower than for rain and snow. In 
particular, the RAP model severely under-
represents ice pellets and accordingly has almost 
zero skill and a very low bias. Thus, the RAP 
performs poorly for ice pellets compared to the 
other models analyzed in the study. 

In response, the Earth System Research 
Laboratory (ESRL) implemented an ice pellet 
diagnostic change that changed the integrated rain 
water requirement from 0.05 g/kg to 0.005 g/kg 
(NOAA 2015). There are two versions of the RAP 
currently active: the experimental RAP, or the 
ESRL-RAP, running through the Earth System 
Research Laboratory, and the operational RAP, or 
the NCEP-RAP, running through the National 
Center for Environment Predictions. The ice pellet 
diagnostic change was implemented in the ESRL-
RAP on 12 March 2014, but as of June 2015 had 
yet to be incorporated into the NCEP-RAP (E. 
James, personal communication). This lag 
between the implementation of the PL-diagnostic 
change between the ESRL and NCEP versions of 
the RAP extends for over a year, encompassing 
the entire cold season of 2014-2015. This provides 
a unique opportunity to assess parallel versions of 
the RAP with and without the fix. This project 
seeks to determine whether the PL-diagnostic 
change has improved the precipitation type 
forecast skill of the ESRL-RAP over the NCEP-
RAP by verifying both models against mPING 
observations. 

 
 
 
 

2. METHODS 
 
a. Data 
 
 The NCEP-RAP model output was 
obtained from the NOAA National Operational 
Model Archive and Distribution System 
(NOMADS), while the ESRL-RAP model output 
was obtained from the Earth Science Research 
Laboratory (ESRL). For the observations used as 
ground truth, mPING archives for the cold season 
of 2014-2015 were retrieved, consisting of the 
observation ID, time and location of observation, 
and the precipitation type. These observations are 
compared against the precipitation type output 
generated from the RAP model at the nearest grid 
point. 

Precipitation type diagnosis in numerical 
weather prediction models occurs during the post-
processing stage, utilizing raw model output to 
assign precipitation types. In the case of the RAP 
model, a microphysics parametrization scheme 
based on Thompson (2008) is applied to the 
model. In the post-processing stage, hydrometeor 
mixing ratios and fall rates for each precipitation 
type are used, along with surface temperatures, to 
generate a categorical yes or no value for each of 
the four primary precipitation types: rain, snow, ice 
pellets, and freezing rain. This procedure is 
discussed in further detail in Ikeda et al. (2013) 
and NOAA (2015). 

As precipitation types are diagnosed 
independently, it is possible for the RAP to assign 
multiple precipitation types at the same location. 
Some of these overlaps do not match with 
mPING’s categories, such as a mix of freezing rain 
and ice pellets which is possible under the RAP’s 
algorithm but is not an option provided in mPING. 
In order to maintain consistency between the two 
sources, all instances of multiple precipitation 
types are collapsed into the four primary types, 
following the approach used in Elmore et al. 
(2015), and a ranking is assigned in order from 
highest to lowest impact: freezing rain, ice pellets, 
snow and rain. 

Six cases are selected from the 2014-
2015 cold season; these six cases are listed in 
Table 1, which contains the start and end hours of 
each event, as well as how many mPING 
observations were used from each case at 3-hour 
lead time, which is typical for all lead times. 
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Case Start Case End 3hr Lead Time 
mPING Reports 

Percentage of 
Total Cases 

Primary Regions 
of Impact 

09 UTC 
11/26/2014 

03 UTC 
11/27/2014 

2976 12.6% Northeast US 

23 UTC 
2/1/2015 

22 UTC 
2/2/2015 

2331 9.9% Northern US 

21 UTC 
2/15/2015 

06 UTC 
2/17/2015 

4637 19.6% Southern US 

12 UTC 
2/20/2015 

00 UTC 
2/22/2015 

3015 12.8% Central, Eastern 
US 

06 UTC 
2/23/2015 

00 UTC 
2/24/2015 

1347 5.7% Southern US 

12 UTC 
3/3/2015 

21 UTC 
3/5/2015 

9335 39.5% Central, Eastern 
US 

 
Table 1. Beginning and end times of each case, total number of locations where both versions of the RAP 

depict precipitation and an mPING observation exists for each case at 3-hour lead time, percentage of 
each case within the total composite, and the primary region(s) of impact of each event. 

 
 
b. Methods 
 

In order to verify the RAP’s precipitation 
type forecasts, both the ESRL-RAP and NCEP-
RAP are individually compared against mPING 
observations. All observations 30 minutes prior to 
or following the nearest forecast hour are centered 
to that hour, and each mPING observation for that 
centered hour is compared against the 
precipitation type assigned to the nearest RAP 
gridpoint valid at the same hour. This procedure is 
completed separately for the NCEP-RAP and 
ESRL-RAP at 3, 6, 9, 12, 15 and 18 hour forecast 
lead times, for each case as well as a composite 
of all cases. Only locations that had precipitation 
forecast by both versions of the RAP and 
observed through mPING are considered for this 
study. 

The resulting comparisons are analyzed 
using three different statistics: the Gerrity Skill 
Score (GSS), the Peirce Skill Score (PSS), and 
bias. The GSS determines the skill for all four 
ordered precipitation types simultaneously. The 
GSS is an equitable score, meaning that among 
other factors, constant and random forecasts yield 
a score of zero (Gandin and Murphy 1992). 
Additionally, the GSS penalizes misdiagnosis of 
common precipitation types, such as rain, more so 
than misdiagnosis of rare precipitation types, such 

as freezing rain. The GSS ranges from -1 to 1, 
where -1 is an anti-perfect forecast, 0 is the 
sample climatology or constant forecast (e.g. no 
skill), and 1 is a perfect forecast (Elmore et al. 
2015). 

In order to analyze precipitation types 
individually, the PSS and bias are applied. The 
PSS is also an equitable score and ranges from -1 
to 1, and is used to assess the skill of each 
individual precipitation type relative to sample 
climatology. The bias is the ratio of the number of 
forecasts of a precipitation type divided by the 
number of observations of the same precipitation 
type; a bias of 1 is an unbiased forecast, while a 
bias less than 1 is an underforecast and a bias 
above 1 is an overforecast of the precipitation 
type. A bias of 1, however, does not necessarily 
imply that the forecast is correct, as it does not 
account for location. 

For each statistic, a 95% confidence 
interval is computed based on bootstrap 
resampling. Permutation tests are used to 
determine whether the difference between the 
means of each statistic for the ESRL-RAP and the 
NCEP-RAP is statistically significant. For example, 
a p-value less than 0.05 indicates statistical 
significance at the 95% confidence level, while a 
p-value less than 0.01 corresponds with 99% 
confidence level.
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3. RESULTS 
 
a. Composite of All Cases 
 

 
Figure 1. Gerrity Skill Score (GSS) for the full case 
composite analyzed at 3-hour forecast lead time 
intervals. Thick lines represent the mean GSS, 
while the encompassing dashed lines represent 
the 95% confidence interval based on bootstrap 
resampling. 
 
 For the composite of all cases, the 
aforementioned statistical skill scores are 
computed in 3-hour intervals from 3 to 18 hour 
forecast lead time. Figure 1 depicts the mean GSS 
and 95% confidence interval for both versions of 
the RAP. At 3 hours, the ESRL-RAP performs 
relatively well with a mean GSS of 0.525, whereas 
the NCEP-RAP has a mean GSS of 0.481. 
Permutation tests yield a p-value much less than 
0.01, indicating that the improved skill of the 
ESRL-RAP is statistically significant at the 99% 
confidence level. The skill of the ESRL-RAP 
degrades with increasing lead time, however, and 
by 6 hour lead time the mean GSS of the ESRL-
RAP is 0.461, compared against the mean GSS of 
the NCEP-RAP at 0.482. Permutation tests 
indicate that this difference is statistically 
significant. The same trend continues through the 
remainder of the 18-hour forecast range, with the 
mean GSS gradually decreasing with increasing 
lead time. Even though these differences are 
statistically significant, they may have little 
practical significance. 

The composite sample is broken down 
into the four primary precipitation types to help 
determine whether any particular type is affecting 
the performance of the RAP. Figures 2a-2h depict 
the bias and PSS for each precipitation type. For 
rain, the ESRL-RAP has a persistently higher 
mean bias than the NCEP-RAP, both of which are 

above 1. Thus, the ESRL-RAP overforecasts rain. 
For snow, the ESRL-RAP shows a substantial 
improvement with an almost perfectly unbiased 
output. For freezing rain, the ESRL-RAP shows a 
significantly lower bias than the NCEP-RAP, but 
with a continued tendency to overforecast freezing 
rain. For ice pellets, the NCEP-RAP has a very 
low bias, alternating between 0.12 and 0.15, 
continuing to underforecast ice pellets in the grid. 
The ESRL-RAP does better, with the bias 
alternating between 0.28 and 0.38, although this is 
still far removed from an unbiased score. All bias 
differences between the ESRL-RAP and NCEP-
RAP are significant at the 99% confidence level 
except for freezing rain at 3-hour lead time, which 
is significant at the 95% confidence level. 

An analysis of the PSS for the individual 
precipitation types shows minor changes for rain, 
with a higher PSS for the ESRL-RAP at 3 hour 
lead time and lower PSS at 18 hour lead time, 
while the PSS for freezing rain is typically worse 
for the ESRL-RAP than the NCEP-RAP. The 
ESRL-RAP has a statistically significant higher 
PSS than the NCEP-RAP for snow, as well as ice 
pellets. 
 The composite of all cases reflects an 
improvement in ice pellet diagnosis, although 
typical variability in the evolution of winter storms 
on a daily basis result in different outcomes for 
each case. To further highlight the extent of these 
day-to-day variabilities, two cases are analyzed in 
more detail in the next two sections. 
 
b. 26-27 November 2014 
 
 The 26-27 November 2014 case was 
dominated by a coastal low pressure system along 
the East Coast which produced an early season 
snowstorm across the Mid Atlantic into New 
England regions. This case produces the lowest 
skill scores out of any case analyzed in this study, 
and the NCEP-RAP depicts very little mixed 
precipitation, despite mPING observations 
suggesting otherwise; for the 3-hour lead time, 
there are 448 ice pellet and 33 freezing rain 
observations, while the NCEP-RAP has only 1 ice 
pellet and 2 freezing rain forecasts. 
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Figure 2. For the composite of all cases, a) bias and b) Peirce Skill Score (PSS) for rain, c) bias and d) 

PSS for snow, e) bias and f) PSS for ice pellets, and g) bias and h) PSS for freezing rain. Note the 
different y-axis on the freezing rain bias time series. 
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Figure 3. a) NCEP-RAP and b) ESRL-RAP forecast precipitation type with a 3-hour lead time, valid at 
1900 UTC 26 November 2014. Modeled p-types are in filled contours, and mPING observations are 

represented in circles. 
 
 Using Figures 3a and 3b for a visual 
analysis, the NCEP- RAP does not depict any 
precipitation type other than rain or snow, despite 
the presence of numerous ice pellet and freezing 
rain mPING reports from Washington D.C. to 
Boston, which explains its low scores relative to 
the rest of the cases. The ESRL-RAP is improved 
with its depiction of a narrow axis of ice pellets 
from Maryland into coastal New England, and also 
outputs rain over southern New Jersey and Long 
Island, indicating a closer match to mPING 
observations than the NCEP-RAP which depicts 
only snow for these locations. 
 

 
Figure 4. GSS for 26-27 November 2014 analyzed 
at 3-hour forecast lead time intervals. Thick lines 
represent the mean GSS, while the encompassing 
dashed lines represent the 95% confidence 
interval. 

The mean GSS for the ESRL-RAP (Fig. 4) 
generally alternates between 0.15 and 0.18, which 
is a small but statistically significant improvement 
over the NCEP-RAP which alternates between 
0.10 and 0.16. 
 
c. 3-5 March 2015 
 
 The 3-5 March 2015 case synoptically 
consisted of two rounds: a widespread snow and 
ice pellet event in the Northeast US on 3 March 
2015, followed by a slow southward progression of 
a strong baroclinic zone extending from the 
southern Plains into the Mid Atlantic regions 
consisting of a well-defined transition zone 
between rain, freezing rain, ice pellets and snow. 
This case is unusual as the GSS for the ESRL-
RAP was typically lower than that of the NCEP-
RAP at the 95% confidence level. 
 Another key difference between the two 
versions of the RAP becomes apparent (Fig. 5): 
when the model output is collapsed to the four 
primary precipitation types, the NCEP-RAP 
depicts an unrealistic transition zone from rain to 
snow at 3 hour lead time, particularly over 
Tennessee where precipitation type from south to 
north changes from rain to snow, then to ice 
pellets, then to freezing rain, then back to ice 
pellets and snow. One of the most noticeable 
changes with the ESRL-RAP is a much more 
realistic spatial distribution of precipitation types in 
the transition zone, with a south-north transition 
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Figure 5. a) NCEP-RAP and b) ESRL-RAP forecast precipitation type with a 3-hour lead time, valid at 

2300 UTC 4 March 2015. Modeled p-types are in filled contours, and mPING observations are 
represented in circles. 

 
from rain to freezing rain to ice pellets to snow. 
Other cases analyzed in this study show the same 
trend. More ice pellets are being depicted within 
the ESRL-RAP than in the NCEP-RAP, although a 
bias to overforecast rain is apparent in the ESRL-
RAP, particularly over western Tennessee and 
Arkansas where mPING observations show sleet 
while the model depicts rain. 
 

 
Figure 6. GSS for 3-5 March 2015 analyzed at 3-
hour forecast lead time intervals. Thick lines 
represent the mean GSS, while the encompassing 
dashed lines represent the 95% confidence 
interval. 
 

The mean GSS for the ESRL-RAP (Fig. 6) 
degrades from 0.497 at 3 hours to 0.295 by 18 
hours. For the NCEP-RAP, the mean GSS peaks 
at 0.515 at 6 hours before gradually decreasing to 
0.375 by 18 hours, indicating a persistent signal 

that the NCEP-RAP performs better than the 
ESRL-RAP. The difference between the two 
models is statistically significant at the 99% 
confidence level for all forecast lead times except 
3 hours. 
 
4. DISCUSSION 
 
 Clearly, the ESRL-RAP shows an 
incremental improvement in forecasting ice pellets 
and snow. Freezing rain and rain show either no 
improvement or slightly degraded skill within the 
ESRL-RAP. There is still case-to-case variability, 
although the individual cases analyzed all show 
improvement for ice pellets. 
 There may be other differences between 
the two models at play, because in figures 3 and 
4, there are subtle differences in the spatial extent 
of precipitation between both versions of the RAP. 
Currently, the source(s) of these differences are 
not known, although they indicate that other 
changes exist between both versions of the RAP, 
which prevents isolating the ice pellet diagnostic 
from any other change. The small sample size of 6 
cases is used for this analysis may not capture a 
complete picture of the day-to-day variability 
typical of precipitation events. Finally, while some 
of the differences in skill scores and bias between 
both versions of the RAP are statistically 
significant, they may not have much practical 
significance, especially if when differences are 
very small, as is the case with the PSS for freezing 
rain. 
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5. CONCLUSION 
 
 Parallel runs of the ESRL-RAP, which 
incorporates an ice pellet diagnosis upgrade and 
the NCEP-RAP, which does not, are verified with 
mPING observations to assess whether the 
upgrade has improved the performance of the 
RAP model precipitation type diagnosis. GSS 
values are computed for the composite and for 
individual cases, with PSS and bias for each 
individual precipitation type. Bootstrap 95% 
confidence intervals are computed and statistical 
significance of any differences are derived from 
permutation tests. Results suggest that the ESRL-
RAP enjoys incremental and statistically significant 
improvement in the skill and bias for ice pellets 
and snow, but either no change or decreased 
performance for freezing rain and rain. Even with 
the improvements in the ice pellet diagnosis, the 
same bias of under-forecasting ice pellets 
continues but to a lesser extent. A visual analysis 
of the ESRL-RAP also reveals a more reasonable 
spatial distribution of precipitation types in 
transition zones involving sleet and freezing rain. 
Various issues, such as the small sample size and 
inherent day-to-day variability, preclude higher 
confidence on the exact nature of improvement in 
the ESRL-RAP. 
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