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1. INTRODUCTION1 
 
A gust front (GF) is a propagating boundary of a 

parent storm caused by the descending, cold, and 
dense air from a storm that is pushing 
surrounding air at the surface. In other words, it is 
produced as the storm downdraft reaches the 
ground and spreads horizontally (Klingle et al. 
1987). GFs can be observed by radar because of 
intensified reflectivity (compared to clear-air 
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echoes) and velocity characteristics (Rinehart 
2004).  

 
The typical wind gusts associated gust front are 

20 ms-1 (up to 40 ms-1) and the propagation speed 
of GFs ranges between 5-20 ms-1. A GF can 
exceed 12 km in length and 1 km in width. Its 
traveling distance extends to tens of kilometers 
over a duration of several hours. The fronts 
produce low altitude wind shear (Klingle et al. 
1987). Sharp changes in both horizontal and 
vertical wind speed and direction across the front, 
in addition to turbulence created at the GF - 
outflow boundary, can cause tremendous 
catastrophes (Klingle et al. 1987). For example, 
they may negatively impact aircraft operations at 
terminals, vegetation and other structures such as 
homes and businesses. 
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ABSTRACT 
  

The strong wind, shear, and turbulence associated with gust fronts can negatively impact aircraft 
operations at terminals, vegetation and other structures. Currently, the Machine Intelligence Gust-Front 
detection Algorithm (MIGFA) identifies gust front based on signatures from Doppler radar measurements. 
The upgrade of the Weather Surveillance Radar-1988 Doppler (WSR-88D) network to polarimetric 
capabilities was recently completed in 2013. Therefore it is timely to exploit the additional polarimetric 
measurements to improve gust front detection. The Neuro-Fuzzy Gust-front Detection Algorithm (NFGDA) 
was developed for this task. NFGDA preliminary results yielded a higher performance than MIGFA, 
motivating this study to investigate more gust front cases to confirm polarimetric signatures of gust fronts 
and verify the performance of NFGDA. In this study, eight gust front cases are identified and analyzed 
using the NFGDA. Findings included similarities between these and preliminary polarimetric gust front 
signatures. Additionally, the performance results yielded suggested refinements based on the statistical 
analysis of the algorithm. More specific guidelines can be placed in defining a gust front, as it is not a 
well-defined storm feature. Overall, there is room for improvement in order to alleviate this defect of the 
promising algorithm.  
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Figure 1. Schematic diagram of a GF, adapted 

from (Goff 1976). The parent storm is depicted by 
the cloud shape, and the blue arrows represent 
the flows from the parent storm. The orange 
arrows represent the flows of surrounding air, 
which are relatively warm and less dense. The 
regions of downdraft and GF are denoted as 
dotted boxes, respectively. The red circle shows 
the nose region of the GF and it is characterized 
by strong turbulence and wind convergence. 
 

Already, Doppler radar, depicts the GF from 
enhanced spectrum width, a thin line feature in 
reflectivity, and convergence in velocity field 
(Uyeda and Zrnic 1985). The Machine Intelligence 
Gust-Front detection Algorithm (MIGFA), 
developed at the Massachusetts Institute of 
Technology (MIT) in 1993, is the current method 
of detecting GFs. Generally speaking, fuzzy sets 
are used to capture the signature of a thin line 
pattern in multiple radar fields (Delanoy and 
Troxel 1993).  
 

The upgrade of the National Weather 
Surveillance Radar-1988 Doppler (WSR-88D) 
network to polarimetric capabilities was recently 
completed in 2013. Therefore this study of 
polarimetric GF signatures is timely. Having dual-
polarization capability is essential for 
discriminating hydrometeor’s types and between 
meteorological and non-meteorological scatters 
(Park et al. 2009). In general, WSR-88D scans at 
a range of 0–230 km, azimuth angles 0°–360°, 
and elevation scan angles of 0.5°–20° in 

approximately 4-5 minutes for storms (NOAA 
WDTB 2015).  
 

 Most recently, Hwang (2013) developed he 
Neuro-Fuzzy Gust-front Detection Algorithm 
(NFGDA) at the Advanced Radar Research 
Center (ARRC), University of Oklahoma and 
conducted a preliminary evaluation of the 
algorithm. Simply speaking, NFGDA is an artificial 
intelligence algorithm designed to emulate human 
decision-making for GF detection. NFGDA 
combines both Doppler and polarimetric 
signatures and their uncertainties using the Fuzzy 
Inference System (FIS). Moreover, the 
parameters in FIS are further optimized through a 
training process using the Neural Networks (NN). 
 

Preliminary analysis with a limited number of 
cases has shown that NFGDA produced better 
performance than MIGFA. This study examined 
eight additional GF cases ranging in the mid-west 
and southeast during May and June in 2014 and 
2015. There are two goals for this project. First, to 
verify polarimetric signatures of gust fronts. Then 
to conduct a performance analysis of the NFGDA, 
and to suggest refinements for the algorithm. 
 
2. DATA and METHODOLOGY  
 
2.1 Procedure  

In this study, a compilation of severe weather 
events was obtained from NOAA Storm Prediction 
Center (SPC) Archives 
(http://www.spc.noaa.gov/exper/archive/events/in
dex.html). This was used to identify gust front 
cases (time, date, and radar for each event) for 
this study. Subsequently, level-II base data from 
specific radar were downloaded from National 
Climate Data Center 
(http://www.ncdc.noaa.gov/nexradinv/map.jsp) 
(NCDC) NEXRAD inventory. Data from each of 
the eight cases was observed in NOAA Weather 
and Climate Toolkit 3.6.7. The radial properties 
used included the zeroth moment reflectivity (Z) at 
0.51° scan angle in 24-hour format. In this study, 
eight cases of gust front, as listed in Table 1, with 
a total of 308 scans were analyzed.  

 
2.2 Method 

NFGDA was implemented in MATLAB_R2014a. 
The algorithm can be broken down to better 
understand the process in Figure 2. 
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In Figure 2, the input consists of crisp radar 
measurements Z, differential reflectivity (ZDR), 
cross correlation coefficient (ρ

HV
), radial velocity 

(Vr), and differential phase (ϕ
DP

). Next, six 
variables including Z, line feature parameter (β), 
ZDR, ρ

HV
, SD(Vr), and SD(ϕ

DP
) are computed in 

pre-processing. Note that β is a parameter, similar 
to one created at MIT for MIGFA, to characterize 
the line feature in Z and the motion of Z. ZDR is 
defined from the ratio of power between horizontal 
and vertical channels, that can be used to identify 
a target’s dominant shape. ρ

HV
 represents the 

similarity of signals from the two polarizations. 
SD(Vr) is the standard deviation of radial velocity, 
which was developed to characterize the 
convergence signature of the gust front. 
Moreover, SD(ϕ

DP
) is standard deviation of 

differential phase, which can be thought of as the 
texture of differential phase. The NF system 
consists of a FIS and a NN training procedure. 
Subsequently, quality control and cleaning GF 
detections are performed in post-processing by 

examining the continuity of the preliminary 
detections from the NF system. Finally the output 
is a crisp value of 0 (non-GF) or 1 (GF) for each 
pixel.  

  
A study by Hwang (2013) further explained how 

during pre-processing, each input field was 
converted to Cartesian coordinate system and 
both SD (Vr) and SD(ϕ

DP
) were calculated. 

Additionally, the parameter β, that characterizes 
the line feature of reflectivity, was calculated using 
functional template correlation (FTC) (Hwang 
2013). The line feature in Z, the motion of Z 
(defined by the difference of reflectivity fields from 
two consecutive scans) was obtained from the 
maximum value of the nine interest maps from 
nine rotational angles. Note that map rotation was 
done in the polar coordinate system, meaning that 
the map was rotated nine times and converted to 
the Cartesian coordinate system each time. After 
pre-processing, NF system decided whether or 
not there was a presence of GF based on the six 
variables at each pixel. The output of NF system 
was a binary detection result of either GF (1) or 
not (0). To suppress false detections caused by 

 
 
Table 1. A summary of the eight GF cases used in this work. Radar ID corresponds with the names of 

the WSR-88D sites, their locations are listed alongside the site names. These are all warm season events 
between May–June of 2014–2015. VCP range between 12 (severe convective events) and 212 (rapid 
evolving severe convective events). The total number of volume scans analyzed is 308. 
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noise or sometimes from the edge of the storm 
region, a quality control procedure was performed 
in post-processing. Consequently, a second-order 
polynomial fitting was applied to the location of 
detected pixels to obtain the GF location.  

 
The term “fuzzy” refers to a non-threshold 

approach to classifying the condition as GF or 
non-GF based on multiple crisp inputs. Fuzzy 
logic was also used in the hydrometeor 
classification algorithm with polarimetric 
measurements (Park et al. 2009). Fuzzy logic can 
best be described as a variable term used in 
everyday language for human decision making. 
The familiarity of fuzzy logic, including terms such 
as high, medium, and low, is one more reason 
this feature is implemented in the algorithm. 

 
The NF System consists of a FIS with three sub-

sections, fuzzification, rule inference, and 
defuzzification as depicted in Figure 2. Under 
fuzzification, the six crisp inputs are converted to 
fuzzy sets for GF and non-GF. Then, fuzzy sets 
are combined in rule inference. In defuzzification, 
the rule inference fuzzy outputs are converted 
back to crisp outputs where the GF is represented 
by T for true and non-GF is represented by F for 
false.  

 
Fuzzy logic is designed to detect GFs using 

membership functions (MFs). These MFs of the 

six input variables can be obtained initially from 
statistical analysis. Then, the NN makes fuzzy 
logic learn from training data, yielding a refined 
MF for a more accurate detection as 
demonstrated in Figure 3.1 and 3.2.  

 

 
Figure 3.1. MF of β. 
 

 
Figure 3.2. MF of ρ

HV
. 

 

 
 
Figure 2. The NFGDA process with a detailed breakdown of the NF system.  
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In these figures, red lines represent the MFs for 
gust front (GF) and blue lines are for non-gust 
front (non-GF). The solid lines are MFs before 
undergoing NN while the dotted lines are MFs 
after being trained. 
     
3.  RESULTS AND DISCUSSIONS 
 

Statistical results are represented in the 
normalized histograms in Figure 4.1–6, which 
highlight the GF signatures, red (GF) and blue 
(non-GF). Note that non-GF regions include those 
from clear air and storms.  

 

 
Figure 4.1. The normalized histogram for input 

variable Z. 

 
Figure 4.2. The normalized histogram for input 

variable β.  

 
Figure 4.3. The normalized histogram for input 

variable ZDR.  

 
Figure 4.4. The normalized histogram for input 

variable ρ
HV

. 

 
Figure 4.5. The normalized histogram for input 

variable SD(Vr).  

 
 

Figure 4.6. The normalized histogram for input 
variable SD (ϕ

DP
).  

 
The GF signatures are summarized as follows: 

low to medium Z, relatively high β, strong 
convergence SD(Vr), and polarimetric signatures 
include  high ZDR, low ρ

HV
, and relatively large SD 

(ϕ
DP

). The analysis results for these additional 
cases are similar to the preliminary results 
conducted by Hwang (2013).  
 

In order to more thoroughly understand the 
cause of GF signatures, it is necessary to 
breakdown the structure of the GF in relation to 
the results from Figure 4.1–6.  

 
The low to medium Z (5–15 dBz) in GFs as 

opposed to 40-50 dBZ in storms suggests a small 
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concentration of rain drops, and possibly non-
meteorological scatterers such as insects, dust, 
etc. The relatively high β further confirms the thin 
line feature in reflectivity associated with GFs. In 
terms of ZDR, a storm will yield a low 0–3 dB, while 
the GF generally produce high ZDR of 4–8 dB. 
These results suggest that large rain drops and/or 
non-meteorological scatterers including insects 
with oblate shapes are present in GFs. The 
relatively low ρ

HV
 can be due to the mixture of 

different scatterers, for example, large raindrops 
or non-meteorological scatters. So generally ρ

HV
 

is low, < 0.8 in GFs rather than high, 0.90–0.99 in 
a storm. A relatively high convergence, 
characterized by SD(Vr), can be observed in GFs. 
Finally, the relatively high SD(ϕ

DP
) is attributed to 

the high ϕ
DP

 associated with insects frequently 
found in GFs as opposed to the low ϕ

DP
 of a 

storm (Zrnic and Ryzhkov 1998). It has been 
reported that frequently echoes from insects mark 
outflow regions of storms and transition zones 
between air masses with contrasting physical 
characteristics (Zrnic and Ryzhkov 1998). In other 
words, the polarimetric signatures of insects are 
beneficial for detecting GFs by NFGDA. 

 
It is imperative to have the ground truth of GF 

location for the evaluation of NFGDA and the 
study of GF signatures. Ideally, the ground truth 
should be obtained from independent 
measurements. For the purpose of this study, a 
human expert first depicts a region of GF based 
on multiple radar data fields. As expressed by 
Hwang (2013), the location of all the pixels in the 
selected region was used to fit a curve using a 
second-order polynomial function. This curve is 
referred to as the true line. Subsequently, the true 
region is defined by the region centered at the 
true line with a width of 5 km. A true line is 
discussed in Figures 5.1-5.5. It is also denoted by 
the blue dashed lines shown in Figure 6, whereas 
the truth region is denoted by the yellow box of 
Figure 6. 

 
Furthermore, the performance of NFGDA is 

evaluated quantitatively using the eight cases in 
Table 1, based on four detection scenarios of 
“hit”, “miss”, “false detection”, and “correct 
rejection” as shown in Figure 5.  

 
Figure 5.1. The ideal true line as defined by 

(Hwang 2013). This is the ideal scoring matrix 
used to evaluate the performance of both the 
NFGDA GF detection and human hand-picked GF 
region. 

 
     

 
Figure 5.2. This is the “hit” component of the 

scoring matrix used to evaluate the performance 
of both the NFGDA GF detection and human 
hand-picked GF region. 
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Figure 5.3. This is the “miss” component of the 

scoring matrix used to evaluate the performance 
of both the NFGDA GF detection and human 
hand-picked GF region. 
 

  
Figure 5.4. This is the “correct rejection” 

component of the scoring matrix used to evaluate 
the performance of both the NFGDA GF detection 
and human hand-picked GF region. 

 
 

Figure 5.5.This is the “false” component of the 
scoring matrix used to evaluate the performance 
of both the NFGDA GF detection and human 
hand-picked GF region.  
 

An ideal true line is denoted by the blue dashed 
lines shown in Figure 5.1, where the true region is 
denoted by the yellow boxes. A “hit” (Figure 5.2) 
is obtained when the dotted line from NFGDA lies 
fully or partially within the true region, as depicted 
by the solid lines in Figure 5.1 and 5.2. Note that 
the portion of the dotted line outside the true 
region is marked with red coloring. If the detected 
GF is completely outside of the true region then it 
is considered a “miss,” as shown in Figure 5.3. In 
addition to the GF cases, “correct rejection” 
(Figure 5.4) is defined when nothing is detected in 
null cases. However, if the line is detected without 
the true region, it is regarded as “false”, as shown 
in Figure 5.5 (Hwang 2013).  
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Figure 6.2. An example of ground truth from 

preliminary cases by Hwang (2013) for a GF is 
demonstrated. Locations selected by an expert 
are considered as truth and denoted by blue 
contours. A true region is depicted by the yellow 
box and is defined by extending the true line (blue 
dashed line) to 5 km. Within the hand-picked 
region is the thin line Z GF feature chosen by the 
human.  

 
Then, as seen in Figure 7, there is a “hit” where 

the detected line lies in the truth region. Due to 
the low Z ~ 15–25 dBz, the remainder of the 
proposed GF region does not contain detected 
lines. Though not detected, the low Z falls under 
the GF signature for Z and should have been 
detected by the algorithm as a GF. This leaves 
room for future work in refining the algorithm and 
its sensitivity to low Z, and defining the GF region. 

 

Figure 7. This image depicts the NFGDA 
detection from case I classified as a “hit”, because 
both the algorithm and human picked the region 
to have a GF. The hand-picked region is 
represented by the yellow lines. 

 
Note, the earlier statement that the performance 

of NFGDA is evaluated quantitatively based on 
the four detection scenarios of “hit", “false", 
“miss", and “correct rejection". Consequently, the 
probability of detection (POD), the probability of 
false alarm (PFA), and the percent correct (PC) 
for the performance evaluation of NFGDA are 
provided in the following.  

 
Probability of detections (POD) = Nt / (Nt + Nm) 
Probability of false alarm (PFA) = Nf / (Nt + Nf) 
Percent correct (PC) = (Nt + Nr) / (Nt + Nm + Nr + 
Nf) 

where Nt, Nm, Nr, and Nf are the number of hit, 
false, miss and correct rejection for all the eight 
cases, respectively.  
 

The final two measurements compare the length 
of correct detection and length of false detection, 
percent of length detection (PLD) and percent of 
false detection (PFD).  
 
 Percent of Length Detection (PLD) = Lt / Ltot 
Percent of False Detection (PFD) = Lf / (Lt + Lf) 
 

where Ltot, is the total length of the true line for 
all eight cases, Lt is the total length of detected 
line, and Lf is the total length of the portion of 
falsely detected line including over-detection, as 
shown in Figures 5.1–6.  

 
 The performance evaluation results are listed in 

Table 2. 
 

Out of the total 308 volume scans analyzed, the 
algorithm and human expert detected the same 
truth region half of the time as the POD was 
51.22% in Table 2. Limitations occurred as many 
of the GF cases had a propagation of a fairly 
weak Z ~ < 25 dBz. The algorithm did not detect 
the light thin line feature associated with the weak 
Z, primarily due to the algorithm’s sensitive nature 
and inability to detect the GF Z  ~ < 25 dBz. For 
example, Figure 8 shows Case II which has a 
hand-picked region in a weak area of Z ~ 10–20 
dBz that the algorithm failed to detect as a GF.  
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  Figure 8. A “miss” hand-picked case due to weak 
Z.  
 
4.  CONCLUSIONS 
 

Upon completion of implementing the NFGDA, 
results led to refinements in order to yield a more 
realistic performance evaluation.  
 

There are challenges in defining the “true” 
GF/region. More specific guidelines can be placed 
in defining a GF, as it is not a well-defined storm 
feature. In order to alleviate this defect, the 
algorithm might need to be retrained.  
 

Additionally, algorithm convergence signatures 
can be improved. For example, radial based 
convergence estimation can mitigate the 
smoothening of convergence as used in the 
standard deviation. NFGDA should be modified to 
handle cases of more than one gust fronts are 
present. For example, in Figure 9 there are two 
GFs propagating toward each other. If both GF 
regions could have been hand-picked, as 
opposed to only one, the NFGDA would 
potentially detect both leading edges as GFs. This 
could yield a higher performance evaluation 
detection. 

 

 
Figure 9. This image depicts the output of a time 

step from case VI where a GF region was hand-
picked (within yellow true region), while another 
GF is propagating upward from a second parent 
storm (outside of true region). 
 

The next step in analyzing the performance of 
NFGDA would be to conduct a performance 
evaluation in MIGFA to be compared with NFGDA 
results. Other future work may include highlighting 
polarimetric variables in NFGDA. One may even 
explore additional explanations for the weak Z 
feature, such as a lack of raindrops and insects.  
 

Overall, the NFGDA is a promising algorithm in 
need of refinements to more accurately detect GF 
signatures.  
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Table 2. The performance detection matrix results for the eight additional cases analyzed during this 

study. From left to right, probability of detection (POD), probability of false alarm (PFA) percent correct 
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are in part due to the weak Z and the failure of the algorithm to detect that light Z feature.  
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