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ABSTRACT 
Every spring, the Storm Prediction Center (SPC) and the National Severe Storms Laboratory 

(NSSL) run an experiment to improve the prediction of severe weather called the Hazardous Weather 
Testbed. One of the major goals of the experiment is to forecast individual hazards, such as hail. These 
hail forecasts are run on the Center for Analysis and Prediction of Storms (CAPS) mixed physics 
ensemble. This ensemble is run using the Advanced Research Weather Research and Forecasting 
(WRF-ARW) numerical weather prediction model with 9 ensemble members and horizontal grid-spacing 
of 3 km. Automated hail forecasts are run for a 24 hour period using three different methods: HAILCAST, 
the Thompson Hail Size Method, and the Gagne Machine Learning Method.  
 To verify the three hail forecasting methods, neighborhood ensemble probabilities are calculated 
for a 24 hour period for both 25 mm and 50 mm hail.  These hail forecasting methods are verified against 
data from the NSSL Multi-Radar Multi-Sensor (MRMS) radar mosaic using the Maximum Expected Size 
of Hail (MESH) method. Relative Operating Characteristic (ROC) curves as well as Attribute Diagrams 
were created along with calculating the ROC Area Under the Curve (ROC AUC) and Brier Skill Score. A 
case study of May 26, 2016 was performed; on this day a large complex of storms moved over Nebraska, 
Kansas, Oklahoma, and Texas, producing 204 reports of severe hail, 183 reports of severe wind, and 21 
tornado reports. 

Overall, the Gagne Machine Learning Method has greater skill, in terms of the Brier Skill Score, 
than the other two hail forecasting methods. The Gagne Machine Learning Method also exhibits better 
discrimination for 25 mm hail in terms of the ROC AUC score. Lastly, the Gagne Machine Learning 
Method consistently performs well across all microphysics schemes because it is calibrated on each 
microphysics scheme. For the May 26, 2016 case study, the Gagne Machine Learning method exhibited 
greater capability to predict hail exceeding 25 mm in diameter while producing relatively few false alarms. 

 
  

.1. INTRODUCTION AND MOTIVATION 
 
 Hail is a severe weather phenomenon that 
can cause property damage, injury to humans, as 
well as damage to crops. It is estimated that each 
year, hail causes over 1 billion dollars in property 
loss and also over 1 billion dollars in crop damage 
(Jewell and Brimelow 2009). In terms of injuries, the 
hail storm in Fort Worth, Texas at Mayfest on May 
5, 1995 resulted in over 100 people with bruises 
and broken limbs (Edwards and Thompson 1998). 
Some of these economic losses and injuries could 
be prevented or mitigated with precise hail 
forecasts allowing more time for preventative 
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actions such as moving people, cars, or other 
property to a safe location.  
 Currently, it is challenging to forecast 
severe hail because of uncertainties in model 
forecasts and in the observations. Some of these 
uncertainties come from the microphysical 
parameterizations, which are necessary to predict 
the characteristics of hail producing storms and the 
surrounding environment (Snook et al. 2016). 
Microphysical parameterizations indirectly model 
the effects of cloud and precipitation formation as 
these processes cannot be explicitly modeled. Also, 
the prediction of hail is restricted by the quick 
development and evolution of storms that produce 
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hail (Gagne et. al 2015). However, with the use of 
ensemble convection-allowing numerical weather 
prediction models, a range of atmospheric 
conditions with their uncertainties can be better 
predicted. These ensemble models can partially 
resolve storms that  are capable of producing hail 
up to a day in advance (Clark et al. 2012). 
 The 2016 Hazardous Weather Testbed 
Spring Experiment took place from May 2, 2016 to 
June 3, 2016 at the National Weather Center in 
Norman, Oklahoma. The Hazardous Weather 
Testbed is conducted by the Storm Prediction 
Center (SPC) and the National Severe Storms 
Laboratory (NSSL) to test new ideas and methods 
to improve forecasting of severe weather events. A 
major component of this experiment was the 
forecasting individual hazards, such as hail. Three 
different hail forecasting models were run: 
HAILCAST, the Gagne Machine Learning Method, 
and the Thompson Hail Size Method. The purpose 
of this paper is to verify the three hail forecasts 
produced by the 2016 Hazardous Weather Testbed 
Spring experiment for the development of more 
accurate operational hail forecasts. 
  
2. DATA AND METHODS 
 
2.1 Data 
 
 The three hail forecasting models were run 
on the Center for Analysis and Prediction of Storms 
(CAPS) mixed physics ensemble. This ensemble 
used the Advanced Research Weather Research 
and Forecasting (WRF-ARW) model. Ten 
ensemble members with various microphysics 
schemes were run, however only data from nine of 
the members are used in this study. Data from 
member 2 was not used as this member failed to 
run at all. All of the ensemble members were 
initialized on weekdays at 00 UTC and used a 3 km 
grid-spacing on a domain covering the 
 

Table 1: Specifications for the CAPS Mixed Physics Ensemble (NSSL) 

contiguous United States (CONUS). The members 
had 1680 grid-points east-west and 1152 grid-
points north-south. More information about the 
individual ensemble members can be found in 
Table 1. 
 To verify the hail forecasts that were 
produced, data from the NSSL Multi-Radar Multi-
Sensor (MRMS) radar mosaic was used. Radar 
derived maximum expected size of hail (MESH) 
served as the observed hail for verification 
purposes (Witt et al. 1998). For the main part of the 
study, the SPC reports of hail were not used 
because reports are concentrated near populated 
areas, which limits their coverage (Cintineo et al. 
2012). Also, since hail diameters are often reported 
using comparisons to common circular or spherical 
objects, there are unnatural peaks in the distribution 
of the hail size (Jewell and Brimelow 2009). SPC 
hail reports were used for the case study as reports 
for this day reflected the general coverage of 
severe hail well. 
 
2.2 Hail Forecasting Methods 
 
 The three hail forecasting methods that 
were used are HAILCAST, the Gagne Machine 
Learning Method, and the Thompson Hail Size 
Method. HAILCAST is a one-dimensional physics 
based cloud and hail model to predict the maximum 
expected hail size at the surface (Brimelow 2002). 
In HAILCAST, hail embryos are grown based on the 
atmospheric conditions such as instability, shear, 
and moisture. HAILCAST was implemented and 
tested by the SPC and showed to have 
considerable skill in forecasting hail size (Jewell 
and Brimelow 2009). 
 The Gagne Machine Learning Method uses 
machine learning, specifically random forest to fit a 
model between atmospheric variables and 
observed hail size (Gagne 2016). Random forests 
are ensembles of decision trees in which each  
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decision tree is randomized by bootstrap 
resampling of the training data and random feature 
subset selection to increase its independence from 
the other trees. (Breiman 2001). The machine 
learning method first decides if a storm will produce 
hail, and if it does, a separate model is trained to 
predict the size distribution of hail it will produce 
(Gagne 2016). The Gagne Machine learning 
method is calibrated using members from the 2015 
CAPS ensemble that share the same microphysics 
scheme.  
 The Thompson Hail Size Method 
calculates the maximum hail size directly from 
graupel and the hail size distribution produced by 
the microphysics scheme at the lowest model level.  
The Thompson Hail Size Method is different than 
the Thompson microphysics scheme as the method 
is run on all of the ensemble members, of which 
there are four different microphysics schemes. The 
Thompson Hail Size Method works by identifying 
the largest hail or graupel diameter that exceeds a 
specified number concentration threshold 
(Thompson 2003). 
 
2.3 Methods 

Figure 1. Areas within the US Mask used for verification 
 
 To verify the hail forecasts, a method of 
neighborhood ensemble probabilities was used. 
This is to account for the spatial errors in formation 
and evolution of storms (Schwartz et al. 2010). For 
this study, a US mask was applied to the data to 
only include points within the contiguous United 
States, excluding areas over Mexico, Canada, and 
bodies of water where observation coverage is poor 
or non-existent. The mask region is plotted in 
Figure 1. 
 A coarse grid was used in the verification of 
the hail forecasts. This was done by plotting a grid 
point for an ensemble member if hail of a certain 

threshold occurred within 42 km of that point. This 
number was chosen as it is close to the spatial 
verification requirements outlined by the NWS, 
which is 40 km (Sobash 2016). Threshold values of 
25 mm and 50 mm hail, or 1 inch and 2 inch hail 
respectively were used as these are the thresholds 
of severe hail and significant severe hail by the 
NWS (Melick et. al 2014). Data plotted on the 
coarse grid can be found in Figure 2a. This same 
procedure was also performed for the NSSL MRMS 
data with the MESH algorithm.  
 This procedure was applied for each 
ensemble member of the hail forecast. Then the 
probability from all the ensemble members were 
averaged to create an ensemble mean. The 
ensemble mean data is plotted in Figure 2b. A 
Gaussian filter was applied to smooth out the 
probabilities so that they more closely match 
human forecasts (Gagne et al. 2015). A standard 
deviation of 42 km, or 1 coarse grid point, was used 
for the Gaussian kernel. The Gaussian kernel 
performs smoothing up to 4 standard deviations 
away from the center point. A picture of the 
neighborhood ensemble probabilities plotted on a 
map can be found in Figure 2c.  

Figure 3. A contingency table, Source: CAWCR 
  
2.4 Verification Methods 
 
 Two methods were used in the verification 
of the hail forecasts, Relative Operating 
Characteristic (ROC) Curves and Attributes 
Diagrams. A ROC Curve (Mason 1982) is a 
measure of the ability of the forecast to discriminate 
between an event happening or not. At a specific 
threshold of a probability value, a contingency table 
can be constructed. A contingency table shows the 
frequencies of “yes” and “no” for the forecast and 
observations (CAWCR). An example of a 
contingency table can be found in Figure 3. 
 With a contingency table, different 
verification statistics can be calculated. The ROC 
curve plots probability of detection (POD) verses  
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Figure 2. a) This shows the data reduced to a 42 km grid 
b) Shows the ensemble mean c) Shows the data after the 
Gaussian filter was applied 
 
false alarm rate (POFD). POD is the fraction of 
observed “yes” events that were correctly  
forecasted (Wilks 2011).  POFD is the fraction of 
observed “no” events that were wrongly forecasted  
as “yes” (Wilks 2011). The equations for POD and 
POFD are below in equations 1 and 2 respectively. 
 
POD = hits / (hits + misses). (1) 

Figure 4. Example of a ROC Curve, Source: CAWCR 
 

POFD = false alarms / (correct negatives + false 
alarms). (2) 
 
 A ROC Curve graphs POD and POFD for a 
series of threshold values. In this case, the 
threshold values used were .01 and also 0 to 1 with 
a step of .05. An example of a ROC Curve can be 
found in Figure 4. A “perfect” ROC Curve would be 
a vertical line as the forecast would a POD of 1 and 
a POFD of 0, meaning that the forecast can 
perfectly discriminate events from non-events. The 
diagonal line on the ROC curve represents no skill 
as the POD equals the POFD. The area under the 
ROC Curve (ROC AUC) can be calculated to 
quantify resolution. A perfect ROC AUC score 
would be 1 and a ROC AUC score with no skill 
would be 0.5.    
 An attributes diagram shows the reliability 
of a forecast by graphing the forecast probability 
and observed relative frequency for a set of 
probability bins (Hsu and Murphy 1986). An 
attributes diagram examines how well the predicted 
probabilities of an event correspond to the 
frequencies that were observed (CAWCR). An 
example of an attributes diagram can be found in 
Figure 5. With an attributes diagram, a “perfect” 
forecast would be on the 1 to 1 line as the forecast 
probabilities equaled the observed relative 
frequency. If the curve is above the perfect 
reliability line, this means that the forecast 
underpredicts hail. On the other hand, if the curve 
is below the perfect reliability line, the forecast 
overpredicts hail. The horizontal line represents the 
climatology probability, so a curve along this line 
would have no resolution. Half way in between the 
no resolution line and the perfect reliability line is 
the no skill line. Points above the no skill line 
contribute positively to the Brier Skill Score. The 
spread of the forecast distribution across bins 
shows the sharpness of the forecasts (CAWCR). 
 
3.  RESULTS 
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Figure 5. Example of an Attributes Diagram, Source: 
CAWCR 
 
3.1 Overall Verification 
  

ROC curves were created for all of the 
forecasts for both 25 mm and 50 mm hail. The ROC 
curve for 25 mm hail can be found in Figure 6a and  
the ROC curve for 50 mm hail can be found in 
Figure 6b. In terms of the 25 mm or greater hail 
forecasts, the Gagne Machine Learning method 
had the highest ROC AUC score with 0.867. This 
indicates that the Gagne Machine Learning Method 

Figure 6. a) ROC Curve for CAPS Ensemble 25 mm 
 

performs the best in discriminating storms that  
produce hail greater than 25 mm and storms that  
do not. HAILCAST had a ROC AUC score close to 
that of the Gagne Machine Learning Method with 
that of 0.856. The Thompson Hail Size Method 
performed the worst with a ROC AUC score of  
0.734. It is important to note that all three hail 
forecasting models had a ROC AUC score above 
0.7, which is considered to be operationally useful 
(Strensrud and Yussouf 2007).  
 In terms of the 50 mm or greater hail 
forecast, the Thompson Hail Size Method scored 
the highest ROC AUC score with 0.828. This 
indicates that the Thompson Hail Size Method was 
the best in discriminating storms that would 
produce hail greater than 50 mm due to the model 
having higher PODs. However, the Thompson Hail 
Size Method had higher POFDs when compared to 
other models when forecasting 50 mm hail. The  
Gagne Machine Learning Method had a ROC  
AUC score reasonably close to that of the 
Thompson Hail Size Method with a ROC AUC 
score of 0.779. The worst performing method was 
HAILCAST with a ROC AUC score of 0.704. Again, 
all of the hail forecasting methods had ROC AUC 
scores above 0.7, suggesting that they have 
operationally useful skill for forecasting 50 mm hail 
or greater. However, the hail forecasting methods 
had worse ROC AUC scores with 50 mm hail or  
larger than 25 mm hail or larger. 
 

b) ROC Curve for CAPS Ensemble 50 mm 
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Figure 7. a) Attributes Diagram for CAPS Ensemble 25 
mm 
 

Attributes diagrams were also created for 
all of the forecast for both 25 mm and 50 mm hail. 
The attributes diagram for 25 mm hail can be found 
in Figure 7a and the attributes diagram for 50 mm 
hail can be found in Figure 7b. For 25 mm hail, the 
Gagne Machine Learning Method had the highest 
Brier Skill Score with 0.183. HAILCAST was not far  
behind with a Brier Skill score of 0.165. However, 
HAILCAST tended to slightly underpredict hail as 
the curve is above the dashed line and the Gagne 
Machine Learning Method tended to slightly 
overpredict hail as the curve is below the dashed 
line. The Thompson Hail Size Method consistently 
overpredicted hail and thus had a negative Brier 
Skill Score of -1.141. 
 When looking at the 50 mm or greater 
forecast, the Gagne Machine Learning Method has 
the highest Brier Skill Score of 0.028. Again, 
HAILCAST was close to the Gagne Machine 
Learning Method with a Brier Skill Score of 0.011. 
Just as with the 25 mm forecasts, the Thompson  
Hail Size Method has a negative Brier Skill Score, 
that of -0.162. Similar to the ROC AUC scores, the 
25 mm hail forecasts had a higher Brier Skill Score 
than the 50 mm hail forecasts for the Gagne 
Machine Learning Method and HAILCAST. For 25 
mm hail forecasts the Gagne Machine Learning  
Method and HAILCAST showed considerable skill 
with the Brier Skill Score. However, with the 50 mm 

b) Attributes Diagram for CAPS Ensemble 50 mm 
 
hail forecasts, all three models overpredicted hail;  
this can be seen in Brier Skill Scores, which are 
around zero or negative, implying little to no skill.  
 
3.2 Verification with Microphysics Schemes 
 
 To evaluate the different hail forecast 
models with the four microphysics schemes, ROC  
Curves and attributes diagrams were created for 
the different microphysics schemes for 25 mm hail 
for greater. ROC curves for each microphysics 
scheme for 25 mm hail can be found in Figure 8. 
Attribute diagrams for 25 mm hail can be found in 
Figure 9. 

At the 25 mm threshold, the Gagne 
Machine Learning Method has a similar ROC AUC 
score over all four of the microphysics schemes, all 
around 0.8. The Gagne Machine Learning Method 
is more consistent over all the microphysics 
schemes as it is calibrated to each scheme. 
HAILCAST scores the highest ROC AUC scores on 
the Thompson and P3 microphysics schemes with 
ROC AUC scores of above 0.8. HAILCAST 
performed almost the same in terms of ROC AUC 
scores on both the Thompson and P3 
microphysics. However, HAILCAST also scored 
low ROC AUC scores on the MY and Morrison 
microphysics with ROC AUC scores around 0.6, 
meaning that these forecasts have little to no skill.  
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Figure 8. ROC Curves at 25 mm Hail for a) MY 
Microphysics b) Thompson Microphysics c) P3 
Microphysics d) Morrison Microphysics 
 
The Thompson Hail Size Method had ROC AUC 
scores of around 0.5 with both the P3 and Morrison 
microphysics, which means that these forecasts 
had no skill. All of the hail forecast models had ROC 
AUC scores of above 0.85 on the Thompson 
microphysics scheme. 

As mentioned above, attributes diagrams 
were also created for 25 mm hail or larger for the 

four different microphysics schemes. Once again, 
the Gagne Machine Learning Method is consistent  
over all of the different microphysics schemes, as 
explained above. The Gagne Machine Learning 
Method has the highest skill on the Thompson and 
P3 microphysics, with Brier Skill Scores of around 
0.1. HAILCAST has the highest skill on the P3 
microphysics scheme, outperforming the Gagne 
Machine Learning Method in terms of the Brier Skill 
Score. The Thompson Hail Size Method has a 
negative Brier Skill Score for all of the different 
microphysics schemes showing no skill. This is due  
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Figure 9. Attributes Diagram at 25 mm Hail for a) MY  
Microphysics b) Thompson Microphysics c) P3 
Microphysics d) Morrison Microphysics 
 
to the fact that the Thompson Hail Size Method 
overpredicts the extent of hail. Almost all of the hail  
forecast methods over-predict hail, except for  
HAILCAST on the MY and Morrison microphysics 
schemes. All of the hail forecast models had similar 
skill for forecasts using the Thompson microphysics 
scheme, as it was the case with the ROC AUC 

scores. When splitting up the hail forecast models 
by the different microphysics schemes, many of the  
hail forecast models had little to no skill in 
forecasting hail 25 mm or larger.   
 
 3.3 Case Study 
 
 A case study of May 26, 2016 was 
performed to evaluate the hail forecast models. 
This day was chosen as it was the worst hail even 
during the experiment. On this day a large complex 
of storms moved over Nebraska, Kansas, 
Oklahoma, and Texas, producing 204 reports of 
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Figure 10. Case Study of 25 mm Hail and Reports a) 
Gagne Machine Learning Method b) HAILCAST c) 
Thompson Hail Size Method  
 
severe hail, 183 reports of severe wind, and 21 
tornado reports. In terms of the synoptic 
environment, there was strong instability with CAPE 
values over 4000 to 5000 J/kg. Shear ranged from 
30 knots in Oklahoma to over 50 knots in Kansas.   
Maps with the probabilities hail exceeding 25 mm 
overlaid with SPC storm reports of hail greater than 
25 mm for each hail forecast model can be found in 
Figure 10. Maps for the probabilities of hail greater 
than 50 mm with the SPC storm reports for each of 
the hail forecasts can also be found in Figure 11. 
  For the 25 mm hail forecasts, the 
Thompson Hail Size Method has high probabilities 
of hail all over the western part of the United States. 
However, the Thompson Hail Size Method misses 
or has very low probabilities of the hail that occurred 
in Oklahoma. This means that while the Thompson 
Hail Size Method correctly predicted most of the 
hail reports, there is a large false alarm rate with all 
of the hail forecasted in the western United States. 
The Gagne Machine Learning Method and   

Figure 11. Case Study of 50 mm Hail and Reports a) 
Gagne Machine Learning b) HAILCAST c) Thompson 
Hail Size Method  
 
HAILCAST have similar areas where hail is 
forecasted, however, the probabilities are a bit  
different. Both models predict hail where almost all 
the SPC storm reports occurred, however the 
Gagne Machine Learning Method has much higher  
probabilities of hail than HAILCAST. Also, the 
Gagne Machine Learning Method appears to have 
a slight bias to the south as many of the SPC storm 
reports occur north of the area of highest 
probabilities. 
 In terms of the 50 mm size hail or larger 
threshold, the Gagne Machine Learning Method 
has very low probabilities where reports of 50 mm 
hail occurred showing that this method is not as 
sharp as other methods. Also, the Gagne Machine 
Learning Method has higher probabilities in Texas 
where there are no SPC storm reports. HAILCAST  
has the correct area of hail greater than 50 mm, 
however, forecasts low probabilities. The 
Thompson Hail Size Method correctly predicts all of 
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the SPC storm reports that are greater than 50 mm. 
However, the Thompson Hail Size Method predicts 
a large area of which hail larger than 50 mm could 
occur, so there would be many false alarms 
associated with this forecast.  

Overall, HAILCAST had the correct areas 
associated with the SPC storm reports but 
predicted low probabilities in some cases. The 
Gagne Machine Learning Method performed well 
at the 25 mm threshold but missed the main 
placement of the 50 mm hail.  
 
4. SUMMARY AND CONCLUSION 
 
 Hail causes a lot of economic losses in 
property damage, crop loss, and injury each year. 
Automated hail forecasts from the 2016 Hazardous 
Weather Testbed Spring Experiment were verified 
in order to develop more accurate operational hail 
forecasts in the future. 

Overall, the Gagne Machine Learning 
Method has greater skill, shown by the Brier Skill 
Score, than the other two hail forecasting methods. 
The Gagne Machine Learning Method also had 
better discrimination for 25 mm hail in terms of the 
ROC AUC score. HAILCAST performed nearly as 
well as the Gagne Machine Learning Method, 
however the Gagne Machine Learning had slightly 
higher ROC AUC and Brier Skill Scores. Lastly, 
Gagne Machine Learning Method performs better 
across all of the different microphysics schemes 
because it is calibrated on each microphysics 
scheme. In terms of the case study, the Gagne 
Machine Learning method captured more storm 
reports and had higher probabilities where hail 
exceeding 25 mm in diameter occurred without 
having a lot of false alarms. HAILCAST performed 
better at forecasting hail 50 mm or greater in the 
case study. 

In conclusion, the Gagne Machine 
Learning Method shows advantages in predicting 
hail over other currently used hail forecasting 
methods. The Gagne Machine Method can be used 
in an operational setting to predict hail up to a day 
in advance. Further development of machine 
learning models and numerical weather prediction 
should lead to more accurate hail forecasts. 
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