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ABSTRACT 43 

Nocturnal tornado events can create societal vulnerabilities when visibility is extremely limited, 44 

when people are asleep, and when people are in weak-infrastructure buildings. Understanding 45 

these high-impact events is a crucial step for forecasters to improve lead times for the public. 46 

Previous studies have assessed the ability for parameters to distinguish severe thunderstorm 47 

environments. This study uses the Statistical Severe Convective Risk Assessment Model 48 

(SSCRAM) to help assess what parameters can be linked to tornado potential in the southeast 49 

United States. This study shows that several parameters have statistically significantly different 50 

distributions between the Southeast and everywhere else in the contiguous United States, and 51 

between the coastal region subset of the Southeast and everywhere else in the contiguous 52 

United States. By adding a constraint of at least 50 knots of effective bulk shear, the 53 

predictability for tornadoes in the southeast U.S. is generally better than everywhere else. 54 

Overall, the coastal region subset offers worse predictability than everywhere else when no 55 

constraints are added. This approach to predictability can contribute to the warn-on-forecast 56 

initiatives and current-day operational forecasting.  57 

 58 

1. Introduction 59 

The overnight hours (03Z-12Z) are a time when society is particularly vulnerable to 60 

severe thunderstorms and tornadoes. These high-impact events are 2.5 times more likely to kill 61 

as those that occur during the daytime because of vulnerabilities such as visibility, people being 62 

asleep, and people being in weak building structures in comparison to steel or reinforced-63 
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concrete buildings during the day (Ashley et al. 2008). Forecasters aim to accurately predict 64 

these severe weather events in order to save lives and improve warnings. The southeast United 65 

States are associated with more tornado occurrences than anywhere else in the United States 66 

from November to May (Fig. 1). Galway and Pearson (1981) examined tornadoes from 1950-67 

1979 and found that 68% of all tornadoes (1040 out of 1531 tornadoes) occur within the 68 

southeast United States during December to February. 69 

Nocturnal tornado environments are often characterized by distinguishable 70 

thermodynamic and kinematic parameters that can create many challenges for forecasters in 71 

the southeastern United States owing to a higher rate of tornado occurrences than the rest of 72 

the contiguous United States (Fig. 1). Tornadoes within this region are generally typified by 73 

weak buoyancy and strong vertical shear (Guyer and Dean 2010), the former of which has 74 

larger predictive uncertainty (e.g., Cohen et al. 2015). Weak buoyancy and strong vertical wind 75 

shear are just a couple of the parameters that can be associated with convection and tornado 76 

potential in the southeast United States.  77 

There have been many attempts to improve forecasting techniques for tornado events 78 

in recent history by incorporating numerical weather prediction models and conceptual models 79 

in order to connect the gap between observations and modeling output (e.g, Schwartz et al. 80 

2014, Bryan et al. 2003; Johns and Doswell 1992; Galway 1992; Burgess and Lemon 1990; Lewis 81 

1989; Scofield and Purdom 1986). The result of these technological improvements has offered 82 

forecasting guidance when identifying multiple individual and combined parameters that 83 

distinguish environments potentially capable of producing severe thunderstorms. However, 84 

small-scale processes within the planetary boundary layer associated with turbulent eddies 85 
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such as vertical mixing related to moisture and heat fluxes, can generate model output errors 86 

(e.g, Cohen et al. 2015; Jankov and Gallus 2004).  87 

Increasing the understanding of these high-impact events and the environments that 88 

support such phenomena is a potentially crucial step to improving tornado predictability within 89 

the southeast United States. Forecasters use an array of individual and combined parameters to 90 

anticipate severe weather occurrence in order to improve forecasting for these high-impact 91 

events. In this study, the southeast United States corresponds to an area depicted on a map 92 

provided in Fig. 2. The coastal region, which is a subset of the general Southeast, is also 93 

depicted in Fig. 2. The coastal region subset was selected as another area of focus because of 94 

the extreme number of average tornado watches issued per year (Fig. 3) as well as the 95 

hypothesis that this subset will not have better predictability than that of the southeast U.S. as 96 

a whole when compared to the rest of the contiguous United States. These hypotheses will be 97 

tested by creating conditional probability plots for different parameters and showing statistical 98 

significance between distributions.  In addition to focusing on these overlapping areas, this 99 

study will also consider the mutually exclusive area outside of the general southeast United 100 

States across the contiguous United States (subsequently referred to as “everywhere else” or 101 

the like).  102 

This study aims to identify a selection of parameters and combination of parameters 103 

that may improve forecasting abilities for these high-impact events by using conditional 104 

probabilities for numerous parameters created from the Statistical Severe Convective Risk 105 

Assessment Model (Hart and Cohen 2016a). The Statistical Severe Convective Risk Assessment 106 

Model (Hart and Cohen 2016a) output yields probabilities based on previous severe weather 107 
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events given different atmospheric parameters. Doswell and Schultz (2006) challenged the 108 

belief of using diagnostic parameters to accurately draw conclusions about the future state of 109 

the atmosphere.  Parameters investigated in detail in the present study include the following: 110 

0-1-km shear, 0-1-km storm-relative helicity (SRH), 100-mb mixed layer convective available 111 

potential energy (MLCAPE), 100-mb mixed layer lifted condensation level heights (MLLCL 112 

heights), effective bulk shear, effective storm-relative helicity (effective SRH), and significant 113 

tornado parameter (STP), which is defined by Thompson et al. (2012). In conjunction with this 114 

present study, the potential utility and use of SSCRAM was studied by a fellow Research 115 

Experience for Undergraduates student, David Nowicki (Nowicki 2017). The goal behind this 116 

combined study is to contribute to the warn-on-forecast program to improve warning lead 117 

times for these severe weather events (Hart and Cohen 2016a). 118 

  119 

2. Methodology 120 

 121 

a.) Data Collection 122 

The probabilities used in this study are conditional upon cloud-to-ground (CG) lightning 123 

occurrence and are related to downstream tornado reports. As described by Hart and Cohen 124 

(2016a), the 40-km RUC-2/RAP grid boxes within the general southeast domain, embedded 125 

coastal domain, and the everywhere else domain are considered. SSCRAM identifies all grid 126 

boxes in each of these domains in which CG lightning occurs (Fig. 4), including several attributes 127 

such as date, time, center point of the grid box (latitude/longitude), and Bunkers et al. (2000) 128 

right-moving supercell motion to represent downstream storm trajectory within the next 2 129 
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hours as well as the environment conditions from SPC Mesoanalysis system (Bothwell et al. 130 

2002) characteristic of the near-storm environment for that grid box.  131 

The validity of Bunkers et al. (2000) right-moving storm motion was shown in Hart and 132 

Cohen (2016a) paper as the preferred method of calculating downstream storm trajectory 133 

based on the consistent structural patterns for conditional probability distributions for different 134 

parameters after comparing four different methods of estimating storm motion. Since the 135 

majority of tornadoes are associated with supercells, the use of Bunkers et al. (2000) storm 136 

motion is the appropriate method for high-impact weather events (Hart and Cohen 2016a).  137 

Furthermore, using Bunkers et al (2000) supercell motion does limit SSCRAM’s use in 138 

distinguishing between other convective modes (Hart and Cohen 2016a). 139 

The dataset from which these conditional probabilities arise is gathered by following 140 

Bunkers et al. (2000) storm motion 2 hours downstream from the center point of the lightning-141 

containing grid box. Tornado reports are gathered at each subsequent hour, downstream from 142 

the center point of the lightning-containing grid box. The search radius at each subsequent hour 143 

downstream from the center point of the lightning-containing grid box is 40 km. As described in 144 

Hart and Cohen (2016a), 40-km was chosen due to the consistency of the grid length of the SPC 145 

Mesoanalysis dataset. Additionally, this radius accounts for any displacement to the storm 146 

motion downstream of the center point of the initial lightning-containing grid box. The dataset 147 

that is attained from this process links environmental parameters to tornado potential in the 148 

future.  149 

 150 

b.) Statistical analysis procedure 151 
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 Two measures of statistical analysis, with plots, are the focus in the discussion following 152 

this section corresponding to the environmental parameters described above: 1) conditional 153 

probabilities of a tornadic events, described in Hart and Cohen (2016) and 2) the statistical 154 

significance of the distributions between the southeastern U.S. and the remainder of the 155 

CONUS; and the coastal region subset and the rest of the CONUS. The conditional probabilities 156 

indicate the frequency of a tornadic event given certain atmospheric parameters associated 157 

with lightning. As an example, in this study, a conditional probability of 40% for a particular 158 

range signifies that 40% of lightning-producing thunderstorms with that parameter range go on 159 

to produce a tornado within the next 2 hours. It should be noted that the probabilities are not a 160 

forecast, but an observation based off of prior events.  161 

A Z-Test (Kanji 2006) was used to determine whether differences between distributions 162 

are statistically significant. P-values were calculated and are overlaid on each graph to 163 

represent different distributions. A green dot represents a p-value of <0.05, which indicates 164 

that the difference between the two compared regimes for a given parameter range is 165 

statistically significantly, and a yellow dot indicates a p-value of 0.05-0.1, which indicates that 166 

the difference between the two compared regimes for a given parameter range is marginally 167 

statistically significantly different. To remain consistent with both Hart and Cohen (2016) 168 

papers, any total number of environments less than 25, will not be plotted in the figures below.  169 

 170 

3. Results and discussion 171 

 172 

a.) Statistical results for the southeast U.S. 173 
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 Conditional probabilities of tornado events (weak or significant) for the southeast U.S 174 

are found to increase slightly with increasing 0-1-km shear, as shown in Fig. 5a. Throughout the 175 

following discussion sections, probability plots will only represent any tornado event (weak or 176 

significant) unless stated otherwise. Most of the tornado environments occur within weak-to-177 

moderate low-level shear regimes, and the overall utility in 0-1-km shear for predicting 178 

tornadoes, is quite limited. In subsequent sections, most of the tornado environments occur 179 

within weaker regimes; however, the focus of this analysis will be examining predictability as 180 

parameters increase. Along with 0-1-km shear, 0-1-km SRH conveys the same overall pattern 181 

when it comes to predicting tornadoes as shown in Fig. 5b. The overall predictability is quite 182 

weak, while only reaching a maximum probability of 5% with a respective parameter value of 183 

650 (m2 s-2). In contrast to 0-1-km shear and 0-1-km SRH, effective bulk shear shows a steep 184 

slope of increasing probabilities with shear values for the southeast U.S from 45 to 70 kt as 185 

shown in Fig. 4e. Along with good predictability, there is statistical significance between the 186 

southeast U.S. and everywhere else within most of this parameter range. This complements 187 

previous studies that highlight the relationship between strong shear environments and 188 

tornado occurrences within the southeast U.S. (Guyer and Dean 2010). Because southeast U.S 189 

tornado environments are typically associated with strong vertical shear and the steep slope of 190 

conditional probabilities compliments this finding, 50 kt of effective bulk shear will be used as a 191 

constraint in later sections.  192 

 Conditional probabilities of tornado events do not vary throughout the entire MLCAPE 193 

range for the southeast U.S., as shown in Fig. 5c. This suggests that low-CAPE environments 194 

during the night and early morning hours only need marginal buoyancy to maintain convective 195 
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updrafts when other environmental parameters are favorable, e.g., shear (Guyer and Dean 196 

2010). In addition to MLCAPE, MLLCL heights show a slight increase in conditional probabilities 197 

for low-level MLLCL heights and a slight decrease for high MLLCL heights. The slight decrease in 198 

probabilities is presumed to be because of the smaller sample size characterized by these 199 

higher LCL heights.  200 

 Operational meteorologists often reference effective SRH and STP for tornado 201 

forecasting (Hart and Cohen 2016a) with analyses for these parameters in Figs 5f and 5g, 202 

respectively. The effective SRH range of 250 to 550 (m2 s-2) shows a substantial increase in 203 

probabilities from 1% to 17.5%; however, the southeast U.S. and the remainder of the CONUS 204 

follow the same distribution. Throughout the U.S., including the Southeast, good predictability 205 

is shown with high effective SRH magnitudes, reaching probability maxima at 550 (m2 s-2) of 206 

15% and 17.5%, respectively. STP is often referenced in operational meteorology to help 207 

illustrate significant tornadoes (EF2 or greater) (Thompson et al. 2012). Lower ranges of STP (0-208 

4) show a major increase in conditional probabilities for significant tornadoes by reaching up to 209 

12% before slightly declining thereafter; this is presumed to be because of a smaller sample size 210 

with increasing STP values. While not shown, the signal for conditional probabilities for weak 211 

tornadoes in the southeast using STP was weak as it only reached to 6% with the same 212 

parameter range. 213 

 214 

b.) Statistical results with a constraint of 50 kt effective bulk shear  215 

 The best predictor for tornadoes for any parameter with no constraint was the effective 216 

bulk shear range of 45 to 70 kt. For this reason, at least 50 kt of effective shear was added as a 217 
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constraint to show predictability for different parameters. It should be noted that this 218 

constraint was also based upon values relevant to organized, severe convection in the 219 

southeast U.S. The three parameters investigated in detail here are 0-1-km shear, 0-1-km SRH, 220 

and MLLCL heights. These parameters showed the best predictability when the constraint of 50 221 

kt of effective bulk shear was added.  222 

 As shown is Fig. 6a, predictability of tornado events for 0-1-km shear is better when the 223 

constraint of at least 50 kt of effective shear was added. Specifically, strong low-level shear 224 

regimes between 40 to 60 kt show the best predictability for this parameter. In addition, the 225 

southeast U.S. shows better predictability than everywhere else and these distributions are 226 

statistical significantly different which demonstrates that the southeast U.S. does follow a high-227 

shear regime for tornado environments. In addition to 0-1-km shear, 0-1-km SRH exhibits good 228 

predictability; specifically, from 0 to 600 (m2 s-2) when at least 50 kt of effective shear is added 229 

as a constraint. Although the southeast U.S offers better predictability than the remainder of 230 

the CONUS after 200 (m2 s-2), the distributions are only statistically significantly different for the 231 

parameter range of 400-600 (m2 s-2) as shown in Fig. 6b.  232 

 The last variable associated with better predictability compared to the rest of the 233 

CONUS when 50 kt of effective shear is added as a constraint is MLLCL heights, particularly 234 

when MLLCL heights are low (300-800 m) as depicted in Fig. 6c. Between this range, conditional 235 

probabilities increase from 1% to about 11% and then begin to steadily decrease as the number 236 

of environments also decreases. This trend in the southeast U.S. is consistent with the 237 

remainder of the CONUS with regard to low probabilities as LCL heights reach 1000m. This is a 238 

reflection that not many environments in the United States with high MLLCLs go on to produce 239 
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downstream tornadoes, even when there is strong, deep vertical shear in the background 240 

environment.  241 

 242 

c.) Statistical results for the coastal region subset 243 

 To illustrate predictability within the southeast U.S., the coastal region was added as a 244 

subset to see how predictability would compare to everywhere else. Throughout this study, it 245 

was found that when the coastal region subset was compared to the remainder of the CONUS, 246 

the coastal region generally offered worse predictability than everywhere else. Conditional 247 

probabilities of tornado events (weak or significant) for the coastal region subset are found to 248 

increase with values of STP ranging from 0 to 5. Along with that, most of the tornado events 249 

occur in this range and the distribution is statistically significantly different than the rest of the 250 

CONUS. Although the coastal region subset offers good predictability for this STP range, the 251 

remainder of the CONUS offers consistently better predictability, as shown in Fig. 7. As the 252 

coastal region begins a decline in probabilities, the rest of the CONUS offers a continuous, steep 253 

slope through STP values of 8.  254 

 Tornado events for the coastal region subset are found to vary slightly with effective 255 

bulk shear as compared to the rest of the CONUS, only reaching a maximum probability of 6% 256 

at 65 kt. We speculate this to be because the of the smaller sample size as shear magnitudes 257 

increase. Furthermore, the coastal region subset offers worse predictability than everywhere 258 

else between the range of 35-70 kt when the distributions become statistically significantly 259 

different.  260 

 261 
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d.) Predictability differences based on tornado intensity variations  262 

 Predictability for weak tornadoes (EF0-EF1) and significant tornadoes (EF2-EF5) can be 263 

distinguished for different parameters. When 50 kt of effective bulk shear is added as a 264 

constraint to 0-1-km SRH, the increase in conditional probabilities for significant tornadoes is 265 

much greater than weak tornadoes as shown in Fig. 8a and 8b. As shown in Fig. 8b and 8c, large 266 

magnitudes of vertical shear, in relationship with downstream tornado occurrence highlighting 267 

0-1-km shear of 60 kt, 13% and 6% of those grid boxes verify with weak and significant 268 

tornadoes, respectively. Furthermore, sizeable magnitudes of effective SRH for weak and 269 

significant tornadoes occur within 0 to 350 (m2 s-2) as shown in Fig. 8e and 8f, respectively; 270 

however, the relationship with downstream tornado occurrence emphasizing effective SRH of 271 

550 (m2 s-2), 8% and 13% of those grid boxes verify with weak and significant tornadoes, 272 

respectively.  273 

 274 

Conclusions 275 

 The Statistical Severe Convective Risk Assessment Model (Hart and Cohen 2016a) 276 

helped show the relationship of predictability between the southeast U.S. and everywhere else, 277 

which is a mutually exclusive area outside of the general southeast United States across the 278 

contiguous United States, and the coastal region subset and the remainder of the CONUS was 279 

investigated in this present study. Various parameters, with constraints, showed an increase in 280 

conditional probabilities and overall better predictability for the southeast U.S. than the rest of 281 

the CONUS. Specifically, at least 50 kt of effective bulk shear is found to offer better 282 

predictability for the southeast U.S. than everywhere else when added as a constraint for 283 
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different parameters. The coastal region subset, in general, offered worse predictability than 284 

everywhere else when the distributions became statistically significantly different. This 285 

illustrates the difficulty predicting nocturnal tornadoes in the coastal region subset during the 286 

period from November to May. In addition, tornado intensity was considered for different 287 

parameters and revealed that for strong low-level shear with deep shear, weak tornadoes offer 288 

better predictability than significant tornadoes in the southeast U.S. Ultimately, this work can 289 

directly influence the warn-on-forecast initiative to help improve lead times for high-impact 290 

events based on parameters and a lightning-producing thunderstorm.  291 

 292 

Acknowledgments 293 

The author would like to extend gratitude to Dr. Daphne LaDue (OU CAPS) and Briana Lynch for 294 

putting on an exceptional summer for all of the REU students. Additionally, thanks are extended 295 

to Andrew Moore for all of the coding help and advice throughout the summer.  Finally, the 296 

author would like to thank David Nowicki for his contributions to this project and continued 297 

capacity as a productive and determined research partner. This work was prepared by the 298 

authors with funding was provided by the National Science Foundation Grant No. AGS-1560419, 299 

and NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma 300 

Cooperative Agreement #NA11OAR4320072, U.S. Department of Commerce. The statements, 301 

findings, conclusions, and recommendations are those of the author(s) and do not necessarily 302 

reflect the views of the National Science Foundation, NOAA, or the U.S. Department of 303 

Commerce. 304 

  305 



 
Bunker et al. p.14 

References 306 

Ashley, W. S., Krmenec, A. J., & Schwantes, R. (2008). Vulnerability due to Nocturnal Tornadoes. 307 

Weather and Forecasting, 23, 795–807. doi:10.1175/2008waf2222132.1  308 

 309 

Bothwell, P. D., J. A. Hart, and R. L. Thompson, 2002: An integrated three-dimensional objective 310 

analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conference on Severe 311 

Local Storms, San Antonio, TX, Amer. Meteor. Soc., J117–J120. 312 

 313 

Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation 314 

of deep moist convection. Mon. Wea. Rev., 131, 2394–2416. 315 

 316 

Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: 317 

Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 61–79. 318 

 319 

Burgess, D. W., and L. R. Lemon, 1990: Severe thunderstorm detection by radar.  Radar in 320 

Meteorology. D. Atlas, Ed., Amer. Meteor. Soc., 619–647. 321 

 322 

Cohen, A. E., and Coauthors, (2015): A Review of Planetary Boundary Layer Parameterization 323 

Schemes and Their Sensitivity in Simulating Southeastern U.S. Cold Season Severe Weather 324 

Environments. Weather and Forecasting, 30, 591-612. doi: 10.1175/WAF-D-00105.1 325 

 326 



 
Bunker et al. p.15 

Doswell, C. A., III, and D. M. Schultz, 2006: On the use of indices and parameters in forecasting 327 

severe storms. Electronic J. Severe Storms Meteor., 1(3), 1–22. 328 

 329 

Galway, J. O., 1992: Early severe thunderstorm forecasting and research by the United States 330 

Weather Bureau. Wea. Forecasting, 7, 564–587. 331 

 332 

____, and Pearson, A., (1981): Winter Tornado Outbreaks. Monthly Weather Review, 109, 1072-333 

1080.  334 

 335 

Guyer, J. L., & Dean, D. R., (2010): Tornadoes Within Weak CAPE Environments Across the 336 

Continental United States. 25th Conference on Severe Local Storms. 337 

 338 

Guyer, J. G., and Imy, D. A., (2006): Cool Season Significant (F2-F5) Tornadoes in the Gulf Coast 339 

States. 23rd Conference on Severe Local Storms. 340 

 341 

Hart, J. A., & Cohen, A. E. (2016). The Statistical Severe Convective Risk Assessment Model. 342 

Weather and Forecasting, 31, 1697–1714. doi:10.1175/waf-d-16-0004.1  343 

 344 

____, & Cohen, A. E. (2016). The Challenge of Forecasting Significant Tornadoes from June to 345 

October Using Convective Parameters. Weather and Forecasting, 31, 2075-2084. doi: 346 

10.1175/WAF-D-16-005.1 347 

 348 



 
Bunker et al. p.16 

Jankov, I., and W. A. Gallus Jr., 2004: MCS rainfall forecast accuracy as a function of large-scale 349 

forcing. Wea. Forecasting, 19, 428–439. 350 

 351 

Johns, R. H., and C. A. Doswell, 1992: Severe local storms forecasting. Wea. Forecasting, 7,  352 

588–612. 353 

 354 

Kanji, G. K. (2006). 100 statistical tests. London: Sage.  355 

 356 

Lewis, J., 1989: Realtime lightning data and its application in forecasting convective activity.  357 

Preprints, 12th Conf. Wea. Analysis and Forecasting, Monterey, CA, Amer. Meteor. Soc., 97–358 

102. 359 

 360 

Nowicki, D. P., cited 2017: How forecasters anticipate nocturnal, cool-season southeastern 361 

tornado events. [Available online at http://www.caps.ou.edu/reu/reu17/finalpapers/Nowicki-362 

Paper.pdf.]  363 

 364 

Scofield, R. A., and J. F. W. Purdom, 1986: The use of satellite data for mesoscale analyses and 365 

forecasting applications.  Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. 366 

Soc., 118–150. 367 

 368 



 
Bunker et al. p.17 

Schwartz, C. S., G. S. Romine, K. R. Smith, and M. L. Weisman, 2014: Characterizing and 369 

Optimizing Precipitation Forecasts from a Convection-Permitting Ensemble Initialized by a 370 

Mesoscale Ensemble Kalman Filter. Wea. Forecasting, 29, 1295–1318. 371 

 372 

Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk 373 

shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102–115. 374 

 375 

——, B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective Modes for Significant 376 

Severe Thunderstorms in the Contiguous United States. Part II: Supercell and QLCS Tornado 377 

Environments. Wea. Forecasting, 27, 1136–1154. 378 

 379 

U.S. Tornado Climatology. National Climatic Data Center. https://www.ncdc.noaa.gov/climate-380 

information/extreme-events/us-tornado-climatology. Accessed 26 July 2017  381 

 382 

Figure Captions 383 

FIG. 1. Example of climatology of tornadoes by state from 1991-2010 for (a) November (b) 384 

December (c) January (d) February (e) March (f) April (g) March (National Climate Data Center 385 

2017). 386 

 387 

FIG. 2. Map of study domains. Within the red-shaded domain represents the general southeast 388 

and within the blue-shaded domain represents the coastal region subset of the general 389 

southeast.  390 
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 391 

FIG. 3. Example of annual average tornado watches per year (20y Avg. 1993-2012) with watches 392 

per county shown.  393 

 394 

FIG. 4. SSCRAM conditional probability output (Hart and Cohen 2016) at 15Z based on 395 

significant tornado parameter, 100-mb mixed-layer CAPE, 3-km AGL wind speed, and season. 396 

Red-highlighted grid boxes indicate at least one CG lightning strike within that grid box. 397 

Conditional probabilities are shown within each grid box.  398 

 399 

FIG. 5. (a) Conditional probability plot for the southeast U.S. (red) with p-values plotted (green 400 

or yellow) overlaid corresponding to respective ranges, coastal region subset (blue) with p-401 

values overlaid on respective ranges, and everywhere else (black) for 0-1-km shear (kt) on the 402 

x-axis, table of total environments relative to each distribution below the x-axis, and conditional 403 

probability on the y-axis. (b) As in Fig. 5a, but for 0-1-km SRH. (c) as in Fig. 5a, but for MLCAPE. 404 

(d) As in Fig. 5a, but for MLLCL height. (e) As in Fig. 5a, but for effective bulk shear. (f) As in Fig. 405 

5a, but for effective SRH. (f) As in Fig. 5a, but for STP.   406 

 407 

FIG. 6. (a) As in Fig. 5a, but with a constraint of 50 kt of effective bulk shear for 0-1-km shear. 408 

(b) As in Fig. 6a, but for 0-1-km SRH. (6) As in Fig. 6a, but for 0-1-km MLLCL height. 409 

 410 

FIG. 7. As in Fig. 5a, but for STP.  411 

 412 
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FIG. 8. As in Fig. 6a, but for weak tornadoes for 0-1-km SRH. (b) As in Fig. 6b, but for significant 413 

tornadoes. (c) As in Fig. 8a, but for 0-1-km shear. (d) As in Fig. 8b, but for 0-1-km shear. (e) As in 414 

Fig. 8a, but for effective SRH. (f) As in Fig. 8b, but for effective SRH. 415 

 416 

Figures 417 
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 421 
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(d) 428 
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(e) 430 
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(f) 434 
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(g) 436 

 437 
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FIG. 1. Example of climatology of tornadoes by state from 1991-2010 for (a) November (b) 438 

December (c) January (d) February (e) March (f) April (g) March (National Climate Data Center 439 

2017). 440 

(2) 441 

 442 

FIG. 2. Map of study domains. Within the red-shaded domain represents the general southeast 443 

and within the blue-shaded domain represents the coastal region subset of the general 444 

southeast.  445 

 446 

(3) 447 
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 448 

FIG. 3. Example of annual average tornado watches per year (20y Avg. 1993-2012) with watches 449 

per county shown.  450 
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 453 
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FIG. 4. SSCRAM conditional probability output (Hart and Cohen 2016) at 15Z based on 454 

significant tornado parameter, 100-mb mixed-layer CAPE, 3-km AGL wind speed, and season. 455 

Red-highlighted grid boxes indicate at least one CG lightning strike within that grid box. 456 

Conditional probabilities are shown within each grid box.  457 
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(b) 466 
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(d) 470 

 471 
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(f) 473 

 474 

(g) 475 
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FIG. 5. (a) Conditional probability plot for the southeast U.S. (red) with p-values plotted (green 476 

or yellow) overlaid corresponding to respective ranges, coastal region subset (blue) with p-477 

values overlaid on respective ranges, and everywhere else (black) for 0-1-km shear (kt) on the 478 

x-axis, table of total environments relative to each distribution below the x-axis, and conditional 479 

probability on the y-axis. (b) As in Fig. 5a, but for 0-1-km SRH. (c) as in Fig. 5a, but for MLCAPE. 480 

(d) As in Fig. 5a, but for MLLCL height. (e) As in Fig. 5a, but for effective bulk shear. (f) As in Fig. 481 

5a, but for effective SRH. (f) As in Fig. 5a, but for STP.   482 
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(c) 487 

 488 

 489 

FIG. 6. (a) As in Fig. 5a, but with a constraint of 50 kt of effective bulk shear for 0-1-km shear. 490 

(b) As in Fig. 6a, but for 0-1-km SRH. (6) As in Fig. 6a, but for 0-1-km MLLCL height. 491 
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 500 

FIG. 7. As in Fig. 5a, but for STP.  501 
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(f) 532 

 533 

FIG. 8. As in Fig. 6a, but for weak tornadoes for 0-1-km SRH. (b) As in Fig. 6b, but for significant 534 

tornadoes. (c) As in Fig. 8a, but for 0-1-km shear. (d) As in Fig. 8b, but for 0-1-km shear. (e) As in 535 

Fig. 8a, but for effective SRH. (f) As in Fig. 8b, but for effective SRH. 536 


