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ABSTRACT 
While non-severe hail is perceived as having little direct societal impact, it can negatively impact 

the quantitative precipitation estimation (QPE), something that can have significant societal impact. 
Miscalculated QPE can lead to mismanagement of emergency services, poor hydrologic forecasts, and 
mismanagement of water resources.  By determining the proportion of convective storms that are 
associated with any hail but, particularly small or non-severe, we can begin to understand the extent to 
which QPE is affected by small hail.  The current hydrometeor classification algorithms have little skill at 
discriminating between small hail and large raindrops.  Thus choosing a threshold at which to make 
adjustments to QPE due to hail is difficult.  We can use meteorological Phenomena Identification near the 
Ground (mPING) crowd-sourced weather reports to make a rough estimate of how common small hail is 
at the surface within convective storms. By pairing mPING data with composite reflectivity within identified 
storms, no clear hail/no hail threshold emerges, and so adjusting QPE based on reflectivity values is 
unlikely to result in much improvement in QPE. 

  
.1. INTRODUCTION  
 

The National Weather Service (NWS) has 
an operational responsibility to forecast and report 
severe hail, defined as hail that is greater than one 
inch in diameter.  Not only is severe hail more 
likely to result in property damage, it also is one 
defining feature of a severe thunderstorm, making 
it an important threshold for verifying watches and 
warnings. While non-severe hail may cause roof or 
other property damage, it can destroy crops when 
paired with strong winds, and it also may 
negatively affect the quantitative precipitation 
estimation (QPE).   QPE is used as guidance for 
flood watches and warnings, in hydrologic 
modeling, and in reservoir management. When 
QPE is overestimated, emergency management 
components may be unnecessarily deployed, 
leading to undue alarm and economic loss.  
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 When QPE is miscalculated, watershed and 
reservoir networks can be mismanaged, which 
may result in long-term problems for entire 
regions.  
 
HOW SMALL HAIL EFFECTS QPE 

Algorithms that use dual polarization radar 
to determine precipitation type may categorize 
small hail as large raindrops.  Because wet hail 
has a much higher reflectivity than pure water, this 
leads to an overestimation of rain rate. A primary 
predictor of hail is differential reflectivity (ZDR), or 
the difference between the horizontal and vertical 
components of hydrometeor reflectivity. Thus, ZDR 
is a function of the general shape of 
hydrometeors. Because large raindrops are larger 
horizontally than vertically, they yield a distinctive 
ZDR return along with characteristically large 
reflectivity. Small raindrops are nearly spherical, 
and therefore create a very small ZDR signature. 
The ZDR return for hail is also usually near zero, 
even for non-spherical hail, because hail tends to 
be randomly oriented (Rhinehart ,2010), and often 
acts as non-Rayleigh scatterers, meaning that the 
overall reflectivity is no longer a monotonic 
function of hydrometeor size.   



Noll et al. p.2  

In contrast, as small hail falls, its radar 
properties become ambiguous. Rasmussen et al., 
(1984) shows that as small hail falls and either 
begins to melt or is in a wet growth phase, the 
liquid water creates a torus around the mid line of 
the hailstone.  This effect causes the hailstone to 
return a ZDR that is much like a large raindrop, that 
is one of an oblate hydrometeor. Without 
additional knowledge of the hydrometeor 
characteristics, whether the return is generated by 
a large raindrop, or small, wet hail, an incorrect 
rain rate is determined, thus, incorrect QPE will 
likely result.   
 
2. METHODS  
  

We use observations submitted through 
the Meteorological Phenomena Identification Near 
the Ground (mPING) app (Elmore et al., 2014) to 
identify convective storms that are associated with 
hail of any size and those for which no hail is 
reported. In order to determine the frequency for 
which convective storms are associated with small 
hail, we use a storm-tracking algorithm that 
identifies convective storm cells and tracks them 
through time until they dissipate or merge with 
another storm (Lakshmanan, 2009). While this 
automated storm-tracking algorithm is not without 
error, it is deemed adequate for the purposes of 
this study.  

The study area is limited to a rectangular 
area bound in by four points at (46.424583, -
105.733937), (30.471940, -105.733937), 
(30.471940, -81.48079), and (46.424583, -
81.48079).  Storm motion is examined subjectively 
at 400 km2 saliency, within the warning decision 
support system – integrated information (WDSS-II) 
platform (Lakshmanan, et al., 2007).  A total of 19 
days are evaluated (Table 1), all of which had a 
high frequency of convective storms.  A “day” is 
defined as spanning 1200 UTC through 0600 
UTC, on the following UTC day.  Storms are 
tracked and evaluated along with mPING reports 
at ten-minute intervals.  mPING reports are 
matched with their associated storm cells, as 
identified  by the storm-tracking algorithm. In order 
for an mPING report to be associated with a storm 
cell, a component of the cell needs to have passed 
over the point of the mPING report within 15 
minutes of the report time. In cases that 
components of two separate cells are nearby, the 
radar product can be stepped backward in time in 
two minute intervals to determine which cell likely 
resulted in the mPING report at that particular 

point. The associated mPING reports are 
separated into four different categories: 
rain/drizzle, small hail, large hail, and other (winter 
weather, wind damage, etc.).  Maximum 
composite reflectivity data for each storm cell at 
the time interval with which it is associated with a 
precipitation mPING report is also recorded.  

 

 
Table 1.  Days in 2017 selected for analysis.  Days are chosen 
based on the overall level of convective storm activity.  
     
3.  RESULTS 
 

During the evaluation of the 19 days used 
for this study, 19814 convective storm cells are 
identified.  Of those storms, 3401 are associated 
with at least one mPING report. 2489 cells are 
associated with rain only (no hail report), 706 cells 
are associated with small hail, 134 cells are 
associated with large hail, and 627 are associate 
with other classes of mPING reports, such as 
winter weather or wind.  The analysis of the 
composite reflectivity focuses on the distinction 
between cells that result in rain-only mPING 
reports, those that have small hail reports, and 
those that have large hail reports. In most cases, 
when a cell has a hail report, it also has a rain 
report. Composite reflectivity of all storms 
associated with “rain only” ranges from 34 dBZ to 
72.5 dBZ with a mean of 53 dBZ.  For storms that 
are associated with small hail, the composite 
reflectivity ranges from 37 dBZ to 73 dBZ with a 
mean of 60.1 dBZ.   Large hail related cell 
composite reflectivity ranges from 36 dBZ to 72.5 
dBZ with a mean of 56.6 dBZ.  The interquartile 
range for the reflectivity of storms resulting in each 
precipitation type is largely overlapping, with the 
mean reflectivity for small hail being the highest.  
Large hail’s lower mean composite reflectivity is 
likely due to the fact that large hail is no longer a 
Rayleigh scatterer and tends toward Mie 
scattering (Rinehart, 2010). 
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Figure 1. Distribution of all mPING reports submitted during 
our sample period. Green dots represent rain/drizzle, yellow is 
small hail, red is large hail, and black is any other mPING 
report type.  

 
Figure 2. Percentage of storms associated with rain, small hail, 
and large hail mPING reports during our sample period.  Error 
bars represent the 95th percentile confidence interval of the 
mean based on bootstrap resampling.  
 

 Figure 3. Percentage of mPING report by type for convective 
storms associated with at least one mPING report. 
 

 
Figure 4. Distribution of composite reflectivity for storm cells 
reported to have each type of precipitation.  Boxes represent 
the interquartile range.  Box notches represent the 95th 
percentile confidence interval for the median.  
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Further analysis of convective storm cells 
on May 15, 2017 and June 12, 2017 show similar 
trends in composite reflectivity.  The composite 
reflectivity range of storm cells results in significant 
overlap of the interquartile rang for each set of 
observations (Figs. 5 and 6). Figures 7 and 8 
show the spatial distribution of all mPING reports 
for each day.  

 
Figure 5: Composite reflectivity distribution for storms 
associated with mPING reports on May 5, 2017 

 
Figure 6:  Composite reflectivity distribution for storms 
associated with mPING reports on June 12, 2017 

 
Figure 7. As in figure 1, but for May 15, 2017 

 
Figure 7. As in figure 1, but for June 12, 2017 
 

 
 
 
4. CONCLUSION 
Within the composite of all 19 days, 1 out of every 
5 storms associated with an mPING report 
contains non-severe hail and so would not be 
noted in any logged report, such as Storm Data.  
Assuming this sample is representative, about 20 
percent of convective storms will generate small 
hail at the surface.  This proportion is significant 
and warrants further efforts to both record non-
severe hail occurrence rate and to better mitigate 
its affects on QPE. One possible method to further 
study hail and its associated radar properties is to 
develop a way to automatically pair mPING 
reports with the related radar, satellite, and other 
relevant data sources.  By pairing these data we 
can improve or adjust current hydrometeor 
classification algorithms to better account for the 
presence of hail. 
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