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ABSTRACT 

 
Urban environments are particularly vulnerable to extreme heat events, otherwise known as heatwaves. 
To help better prepare cities, regional future climate projections of heat waves are necessary. Previous 
studies have shown that heat waves will become more frequent, longer in duration and stronger in 
intensity. In this analysis, we focus on projections of heat waves and cooling degree days in six large 
cities across the south-central United States. An ensemble of statistically downscaled global climate 
model simulations were used to look at heat waves and cooling degree days for a historical period from 
1981-2005 and a late century future time period from 2075-2099. Heat waves were found to more than 
triple for each city and cooling degree days were found to increase anywhere from 50 to 85% by late 
century. In conclusion, already vulnerable environments will experience even more heat stress with an 
increased need for cooling. This could lead to a higher energy demand, more frequent power outages, 
and increased mortality.    
 

  
1. BACKGROUND 
 

Heat is one of the leading causes of 
weather related mortality in America, accounting 
for 24% of all weather related deaths 
(Environmental Protection Agency and Center for 
Disease Control 2016). With the elevated mortality 
related to heat, it is important to prepare for 
extreme heat events (i.e. heat waves) in the 
future. Heat waves are intervals of time associated 
with relatively high temperatures when compared 
to the mean temperature for that region (Perkins 
and Alexander 2013). Prior research has indicated 
an increase in the frequency and duration of heat 
waves from anthropogenic climate change in the 
historical past (Easterling et al. 2000) as well as 
projected increases in intensity in the future with 
higher maximum and minimum temperatures 
(Meehl and Tebaldi 2004; Patz et al. 2005; Luber 
and Mcgeehin 2008; Stone et al. 2010; Thornton 
et al. 2014; Walsh et al. 2014; Kjellstrom et al. 
2016). These increases could lead to multiple 
societal impacts with detrimental effects on 
mortality and the economy.  

The most susceptible populations of the 
growth in mortality due to heat waves are the 
elderly, the young, people without proper air 
conditioning, or those living in urban environments 
(Environmental Protection Agency and Center for 
Disease Control 2016). Urban environments 
experience more intense temperatures during heat 
waves than surrounding rural environments due to 
the urban heat island effect (UHIE). This increase 
in temperatures within urban environments is due 
to low vegetation, low albedo, and an increase in 
thermal-storage capacity in large buildings (Stone 
et al. 2010; Luber and Mcgeehin 2008).  

Commercial buildings account for 18% of 
all energy consumption in the United States with 
HVAC systems making up 32% of commercial 
buildings energy consumption (Pew Center on 
Global Climate Change 2009). During heat waves, 
it is not uncommon to have power outages that 
leave many people without proper air conditioning 
(US Department of Energy 2013). For example, in 
1999 there was a heat wave that affected most of 
the midwestern United States, including Chicago. 
In northern Chicago, a power outage left more 
than 70,000 people without power due to 
overheating of underground transmission lines. 
Close to 20% of these residents had no power for 
more than three days (Palecki et al. 2001). This 
caused economic loss for many businesses and 
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put many residents in dangerously hot conditions 
in their homes.  

Those that live in the south-central United 
States rely heavily on HVAC systems to cool their 
homes and businesses. The urban heat island 
effect increases the need for cooling in 
commercial buildings in these large cities. Cooling 
primarily uses electricity, which tends to be more 
expensive than heating for commercial buildings 
(Rosenthal et al. 1995). In many areas of the 
United States, the increased need for cooling will 
outweigh the reduced need for heating as 
temperatures rise (US Department of Energy 
2013). The U.S. department of energy has found 
that cooling degree days (CDDs) are an effective 
measure of energy consumption needed for 
cooling. A warmer region will have a higher 
average of annual cooling degree days. There 
have been studies showing an increase in CDDs 
across the U.S., but very little work has been done 
using downscaled models to look at specific 
regions (Rosenthal et al. 1995). By analyzing 
specific regions, energy suppliers will have a more 
useful tool to help plan for the future. 

 
2. DATA AND METHODS 
  
2.1 Methodology 
 

Global climate models (GCMs) are too 
coarse (> 100km resolution) and therefore cannot 
capture local effects relevant to regional impacts 
(Wootten et al. 2014). To help prepare cities in the 
south-central United States for future change, 
downscaled climate projections are needed. 
Downscaling is a group of techniques used to 
create high resolution products from translating 
GCM output to look at regional climates. For this 
analysis downscaled climate projections are used 
to examine the potential change in six cities of 
interest. These cities are Oklahoma City, OK, 
Dallas/Fort Worth, TX, Houston, TX, Albuquerque, 
NM, Little Rock, AR, and Baton Rouge, LA (Table 
1). These cities are chosen based on their location 
and their size. Figure 1 shows the spread of the 
cities in our region. The locations of the different 
cities reflect different climates across the south-
central United States. Four metrics are used to 
examine characteristics of extreme heat: maximum 
annual temperature, minimum annual temperature, 
heat waves for specific time periods, and mean 
annual cooling degree days for specific time 
periods. Observations are compared to modeled 
historical simulations for a 25-year period from 

1981 to 2005 for annual mean maximum 
temperatures, annual mean minimum temperatures 
and temperature trends. A 25-year period was 
chosen due to a limitation in the historic observation 
dataset that started at 1981. To examine the 
projected change easily, another 25-year period 
from 2075 to 2099 is used for future projections. 

 
City  Abbr. Sq. mi 
Albuquerque, NM Alb ~190 
Oklahoma City, OK OKC ~620 
Little Rock, AR LR ~120 
Dallas/Ft Worth, TX DFW ~700 
Houston, TX Hou ~625 
Baton Rouge, LA BR ~100 

Table 1: Abbreviations of cities assessed. 

 

 
Figure 1: Cities assessed. 

2.2 Data 
 

There are two types of downscaling 
methods that can be used to downscale GCM 
outputs – dynamical and statistical.  Dynamical 
downscaling is a process where the GCM output is 
used as input for a regional climate model. This can 
be quite computationally expensive and is not 
always efficient. Statistical downscaling methods 
use statistical relationships between the GCMs and 
observational training data to produce higher 
resolution regional products. The downscaled 
products used in this study were created with a 
statistical downscaling method. The data used for 
this analysis was created through a joint project 
between the South-Central Climate Science Center 
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and the NOAA Geophysical Fluid Dynamics 
Laboratory. It includes three GCMs from the 
Coupled Model Intercomparison Project Phase 5 
(CMIP5,Taylor et al. 2012): CCSM4, MIROC5, and 
MPI-ESM-LR. These three GCMs were 
downscaled using equi-distant quantile mapping 
(Pierce et al. 2015). Three different training data 
sets, Livneh (Livneh et al. 2015), Daymet (Thornton 
et al. 2017), and PRISM (Daly et al. 2008), were 
used in the downscaling. This resulted in a total of 
nine different simulations. For this analysis, daily 
maximum and minimum temperatures from two 
representative concentration pathways (RCP 8.5 - 
high emissions scenario and RCP 4.5 - mid-range 
emissions scenario; Vuuren et al. 2011) are 
examined. Observational data used to assess the 
historical performance came from the Livneh 
dataset. 
  
2.3 Heat Waves and Cooling Degree Day 
Calculations 
 

Given the climatic differences across 
regions, there is no standard definition of a heat 
wave. For this analysis, heat waves are defined as 
periods three days or longer when: 
 
1. Maximum daily temperature is above the model 
historic 95th percentile of maximum temperature 
(T95ma) 
2. Minimum daily temperatures is above the model 
historic 95th percentile of minimum temperature 
(T95mi) 
   
 The criteria used in this analysis were 
adapted from Perkins and Alexander (2013). Since 
minimum nighttime temperature plays a large role 
in relieving the stress of high temperatures during 
the day (Perkins and Alexander 2013), it is 

important to include T95mi to consider the overall 
severity of a heat wave.  
 In Figure 2, observational 95th percentile is 
compared to modeled historic 95th percentile. 
Observations and modeled historic were found to 
be similar in magnitude, with slight variations 
between model runs (denoted by error bars).  
Therefore, it is appropriate to use modeled historic 
as the T95ma and T95mi threshold to directly compare 
each model historic run to the corresponding model 
future run. 

Daily cooling degree days were found 
using the standard formula (equation 1) with a 
threshold of 65qF for observations, model historic 
and model future.  
 

𝐶𝐷𝐷 = 𝑀𝑎𝑥 𝐷𝑎𝑖𝑙𝑦 𝑇𝑒𝑚𝑝+𝑀𝑖𝑛 𝐷𝑎𝑖𝑙𝑦 𝑇𝑒𝑚𝑝
2

− 65qF [1] 

 
This assumes that the degree at which 

cooling is required to stay comfortable indoors will 
remain at an outdoor temperature of 65qF. If the 
value of CDD is below zero, the number cooling 
degree days for that day is zero. CDDs are then 
added up by year to look at annual cooling degree 
days per year for each 25-year time period. This 
was then averaged for the 25 years to find a mean 
annual CDD for observations, model historic and 
model future. 
 
3. RESULTS 
 
 First, model simulations are compared to 
observations. Then the results of the different 
model runs for the historic time period (1981-2005) 
and future time period (2075-2099) are analyzed. 
These results include annual maximum and 
minimum temperature, total number of heat waves, 
and mean annual cooling degree days.  

  
Figure 2: Comparing Observations and Model Historic (left: 95th percentile daily maximum temperature, right: 95th percentile 

daily minimum temperature)                                                      
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3.1 Comparing Observations to Model Historic 

 
In this section, observations from Livneh 

are compared to the nine model historical runs to 
evaluate the performance of the model simulations. 
Four metrics are examined to compare 
observations to model output: magnitude of the 
mean maximum and minimum temperatures and 
trends of the annual maximum and minimum 
temperatures. In Table 2 annual maximum (Tmax) 
and annual minimum (Tmin) temperatures averaged 
over the 25-year time period are listed in degrees 
Celsius for each of the cities. The magnitude of Tmax 

and Tmin are very similar across observations and 
model historic for all cities. In contrast, the multi-
model mean tends to overestimate the slope for 
Tmax and underestimate the slope for Tmin (Table 3).  

  
3.2 Annual Maximum and Minimum 
Temperatures 
 

Next, the average annual maximum and 
minimum temperature are considered for each city 
for the historical (1981-2005) and future (2075-
2099) periods (Table 2). The observed maximum 
ranged from 35 to 40qC. This increases by around 
2 to 4qC for RCP 4.5 and 4.5 to 6qC for RCP 8.5 for 
each of the cities (Figure 3a). The observed 
minimum had a much wider range from -15 to -4qC. 
This increases by around 2 to 3qC for RCP 4.5 and 
4 to 6qC for RCP 8.5 (Figure 3b). Therefore, it is 
evident that maximum and minimum temperatures 
are projected to increase in all six cities. 

 Cities Observations 
Multi-model mean (sd of models) 

Model Historical  RCP 4.5 RCP 8.5 

Tmax 

Alb 37.59 37.18 (0.517) 40.58 (0.290) 43.12 (0.479) 
OKC 39.64 39.12 (0.405) 42.93 (1.263) 44.66 (0.882) 
LR 38.62 37.92 (0.366) 42.03 (0.874) 44.16 (1.333) 

DFW 39.59 39.53 (0.253) 43.13 (1.176) 44.66 (0.797) 
Hou 37.12 37.20 (0.136) 39.71 (0.929) 41.43 (0.919) 
BR 35.84 35.91 (0.142) 38.68 (0.744) 40.42 (0.832) 

Tmin 

Alb -13.52 -14.33 (0.583) -12.05 (0.748) -9.28 (1.023) 
OKC -15.28 -14.90 (0.218) -12.56 (0.439) -9.08 (0.421) 
LR -12.06 -12.42 (0.320) -9.65 (0.840) -6.70 (0.807) 

DFW -9.80 -10.06 (0.785) -7.97 (0.751) -5.08 (0.264) 
Hou -4.18 -4.71 (0.586) -2.78 (0.914) -0.21 (0.562) 
BR -6.50 -6.85 (0.256) -4.81 (0.660) -2.08 (0.993) 

Table 2: Maximum and Minimum Temperatures for Observations, Model Historic and Model Future – RCP 4.5 and 
RCP 8.5 (using a multi-model mean with the standard deviation for the nine models) 

 Cities Observations Multi-model mean (sd of models) 

Tmax trend 
line Slope 

Alb 0.00438 0.0630 (0.0475) 
OKC -0.0472 0.0357 (0.0620) 
LR -0.0188 0.0546 (0.0521) 

DFW 0.0185 0.0431 (0.0369) 
Hou 0.0601 0.0686 (0.0191) 
BR 0.0205 0.0445 (0.0115) 

Tmin 
trend line 

Slope 

Alb 0.111 0.0442 (0.0894) 
OKC 0.271 0.0519 (0.0793) 
LR 0.237 0.0819 (0.0792) 

DFW 0.194 -0.0136 (0.0413) 
Hou 0.266 0.0211 (0.0453) 
BR 0.186 0.0943 (0.0160) 

Table 3: Slope of Trend Lines for Maximum and Minimum Temperatures for Observations and Model Historic (using 
a multi-model mean with the standard deviation for the nine models) 
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3.3 Heat Waves 
 

The observed and projected change in 
heatwaves is examined in this section. There were 
anywhere from 21 to 33 heatwaves found in 
observational data from 1981-2005, or around 1 
heat wave per year (Figure 4a). The model 
simulations are similar to the observed number of 

heatwaves from 1981-2005, with a multi-model 
mean range of heatwaves from 25 to 35. For the 
future time period of 2075-2099 the number of heat 
waves increases (Figure 4b). RCP 4.5 has a multi-
model mean range of 112 to 145 heat waves per 25 
years, or 4 to 5 heat waves per year. Under RCP 
8.5 there is multi-model mean range of 130-150 
heat waves per 25 years, or 5 to 6 heat waves per 

 
 

Figure 3: Box and Whisker Plots of Change of Temperature (Model Future - Model Historical) (a) Change of Annual 
Maximum Temperature (b) Change in Annual Minimum Temperature  
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year. The most heat waves occur in Baton Rouge, 
with a multi-model mean of 147 heatwaves per 25 
years for RCP 4.5 and 150 heat waves per 25 years 
for RCP 8.5. It is interesting to note that although 
Baton Rouge’s multi-model mean increases from 
RCP 4.5 to RCP 8.5, the median actually 
decreases. We speculate that this is the result of 
most models having values smaller than the 
median, while there are a few outlier models project 

an increase in heat waves larger than the median. 
Overall, all cities are projected to experience more 
than triple the number of heat waves per year. 
 
 
 
 
 
 

 
Figure 4:Number of Heat Waves per 25 year time period (a) Heatwaves for the Historical time period of 1981-2005 

(Observations and Model Historic) (b) Heatwaves for the Historical time period of 1981-2005 (Observations and Model 
Historic) and for future time period of 2075-2099 (RCP 4.5 to RCP 8.5) 
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3.4 Cooling Degree Days 
 

Finally, Cooling Degree Days (CDDs) are 
analyzed for each city. (CDDs are in units of 
degrees Fahrenheit.) All cities have vastly different 
number of CDDs with very little variation within 
models for each city, although modeled historic and 
observations tend to be similar for each city (Figure 
5a). The large difference in CDDs between cities 
arises from different average daily temperatures for 

the climate zones. Albuquerque has lower minimum 
temperatures at night that can drive down the 
average temperatures, therefore it has only around 
1000 CDDs. In contrast, Houston has very high 
maximum temperatures that drive the average 
temperature up, therefore it has around 3000 
CDDs. There is a large projected change in CDDs 
regardless of RCP (Figure 5b). CDDs are projected 
to increase on average around 50% for RCP 4.5 
and around 85% for RCP 8.5.  

 
Figure 5: Annual Cooling Degree Days [Degrees Fahrenheit] (a) Annual Cooling Degree Days for the Historical time 
period of 1981-2005 (Observations and Model Historic) (b) Annual Cooling Degree Days for the Historical time period 

of 1981-2005 (Observations and Model Historic) and for future time period of 2075-2099 (RCP 4.5 to RCP 8.5) 
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To examine what is causing CDDs to 
increase, trends of the maximum and minimum 
temperatures were examined separately. Maximum 
and minimum trends were examined across model 
historic, RCP 4.5, and RCP 8.5. Trends were found 
to be the similar across all models. We chose RCP 
4.5 for Dallas/Fort Worth to illustrate the results 
since it is in the middle of the regional spread of our 
cities (Figure 6). The first row, associated with 
CCSM4, shows maximum temperatures increasing 
more than minimum temperatures while the 
remaining GCMs show that the minimum 
temperature increasing faster than the maximum 
temperature. So, there is no one variable driving the 
CDDs upward. Therefore, the difference between 
GCMs used in this study affects which variable 
(maximum or minimum temperatures) is driving the 
projected increase in CDDs. 

 
4. DISCUSSION AND CONCLUSIONS 
 

Our projections show an increasing 
number of heat waves and CDDs for the six cites 

examined across the south-central United States. 
Heat waves per year are projected to at least triple 
in all cities. This could lead to increases in the 
number of power outages from overheating. 
Increases in mortality in these cities and economic 
loss for local businesses could also occur. Energy 
suppliers use CDDs to measure energy demand 
used for cooling. This analysis found that CDDs are 
projected to increase by 50% to 85% depending on 
future emissions scenarios. Therefore, increased 
cooling will be required in order to combat the heat.  

The Energy Information Administration has 
developed climatic zones for CDD (US Energy 
Information Administration 2013). The six cites we 
looked at were split into two climatic zones. 
Albuquerque and Little Rock lie within Zone 4 with 
less than 2,000 CDDs per year. The other four cities 
lie within Zone 5 with more than 2,000 CDDs per 
year. This analysis showed that under a high 
emissions scenario both cities in Zone 4 increase 
past 2,000 CDDs therefore pushing them into Zone 
5. In the future, rezoning of these climates might be 

 
 

Figure 6: slope of trend lines  of Maximum (red line) and Minimum (blue line)  Temperatures for the nine model 
historical runs in Dallas/Fort Worth (rows: the first row is associated with CCSM4, middle row is MIROC5 and the last 

row is MPI-ESM-LR)(columns: the first column is associated with Livneh, middle column is Daymet, and the last 
column is associated with PRISM) 
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required to more accurately show the future of 
CDDs.  

This work can be extended to include 
evaluating changes in the frequency, duration, and 
length of heat waves as well as assessing other 
cities in the region or the entire United St 
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