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ABSTRACT

3km grid spaced forecasts generated during the 2019 NOAA Hazardous Weather Testbed Spring Forecast
Experiment (HWT SFE) by the Multiscale Data Assimilation and Predictability group at the University Ok-
lahoma are verified using the Neighborhood Maximum Ensemble Probability (NMEP). The verification was
first performed on variable HWT defined domains and later extended to a large fixed CONUS domain. 24-
hour forecasts of hourly maximum composite radar reflectivity initialized at 0000 UTC on 26 days during
the spring of 2019 were evaluated. Forecasts on the HWT domains were generally skilled albeit with a no-
table over-forecasting bias, while forecasts on the fixed domain were generally poor. Cumulative Distribution
Function (CDF) bias correction was performed in each domain and forecasts were reverified. Further, the
fixed domain was segmented into sub-domains and a novel regional CDF (RCDF) bias correction approach
was undertaken. CDF corrected forecasts on the fixed domain were still poorer than climatology, but signifi-
cantly more skilled than without calibration. RCDF corrected forecasts on the fixed domain were significantly
more skilled than CDF forecasts and were the only forecasts to exceed climatological skill. Synoptic pattern
classification using Self Organizing Maps (SOMs) identified physically realistic synoptic patterns occurring
over a ten-year climatology. naı̈vely using the SOM-derived synoptic classification to remove bias from me-
teorologically similar synoptic flow regimes separately did not generally improve forecast skill compared to
regime-blind bias correction, though an interesting exception is noted. Suggestions are made for improving
the robustness of the regime-dependent calibration scheme.

1. Introduction

The use of convection allowing model (CAM) ensem-
bles is becoming more common in operational settings
owing to their ability to explicitly resolve convective scale
processes. Recent efforts have utilized 3km horizontal
grid spacing to explicitly resolve convective scale pro-
cesses in the sense that grid scale deep convection is per-
mitted (Weisman et al. 2008; Kain et al. 2008), though the
convection itself is not fully resolved (Bryan et al. 2003).
Grid spacing is not the only consideration for effective
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convective scale modeling. Data assimilation schemes are
an active area of research and attempt to improve synop-
tic, mesoscale and convective scale atmospheric represen-
tation in the initialization phase. The Multiscale Data As-
similation and Predictability (MAP) group at the Univer-
sity of Oklahoma is particularly interested in these assim-
ilation schemes and has fielded experimental convective
scale models in the 2017, 2018 and 2019 stagings of the
NOAA Hazardous Weather Testbed Spring Forecast Ex-
periment.

Verification of these CAM ensembles poses a unique
challenge particularly due to the double penalty issue,
whereby small spatial displacement of small scale, high
amplitude features (convective storms in this case) are pe-
nalized as both a flase alarm and a miss despite still con-
situting a useful forecast. This means that typical met-

Based on v4.3.2 of the AMS LATEX template 1
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rics for verifying lower resolution forecasts are not read-
ily applicable to higher resolution forecasts (Nurmi 2003).
Resultantly, unique forecast verification techniques must
be employed to accurately gauge the spatio-temporal use-
fulness of a CAM forecast. Probabilistic neighborhood
based verification techniques are among the most com-
mon high resolution verification methods. The Neighbor-
hood Maximum Ensemble Probability (NMEP) (Schwartz
and Sobash 2017) scheme is particularly attractive as it
accounts for small spatial displacements, while also repli-
cating the interpretation of probabilistic convective hazard
outlooks for nearby significant severe weather events pro-
duced by the Storm Prediction Center (SPC).

Using the aforementioned methods, CAM forecast out-
put variables can be verified as probabilistic fields (Theis
et al. 2005; Johnson and Wang 2012; Bouallegue and
Theis 2014; Clark et al. 2018). Furthermore, statistical
post-processing techniques have been developed to cor-
rect systematic biases in the derived probabilistic fields.
For example, Johnson and Wang (2012) showed that stan-
dard methods such as logistic regression and cumulative
distribution function (CDF) bias correction are effective
in increasing CAM skill when used as statistical post-
processing. Furthermore, Kolczynski Jr. and Hacker
(2014) showed that differing atmospheric regimes can in-
fluence data assimilation analysis increments, while Wang
et al. (2019) explored regime dependent characteristics of
precipitation forecasts generated under differing precipi-
tating regimes across the Great Plains.

We hypothesize accordingly that it should be possible
to not only classify the regime dependent error charac-
teristics of probabilistic CAM forecasts, but also develop
methods to correct for this regime dependent bias. Un-
supervised machine learning provides the tools needed to
facilitate such large scale classification projects. In par-
ticular, techniques such as K-Means clustering and Self-
Organizing Maps (SOMs) have been employed in objec-
tive classification schemes (Philippopoulos et al. 2014;
Wang et al. 2019). In particular, Kolczynski Jr. and Hacker
(2014) highlighted the potential for SOMs to be used in
the identification of patterns that lead to significant model
error.

The SOM is a particularly attractive option for atmo-
spheric classification due to its ability to reduce the di-
mensionality of complex, non-linear datasets. While other
regime classification studies have relied on linear dimen-
sonality reduction methods such as principal component
analysis (PCA) and clustering methods such as k-means
clustering (Mo and Ghil 1988; Michelangeli et al. 1998;
Robertson and Ghil 1999; Michailidou et al. 2012; Mote
1998). In contrast, the SOM is less dependent on the re-
lationship among input data in the sense that it is effec-
tively a non-linear generalization of PCA and thus can
more effectively parse non-linear correlations among vari-
ables. This is particularly important for studies involving

TABLE 1. MAP CAM Configuration (Clark et al. 2019)

Member Model ICs Micro-Physics PBL Radiation LSM LBC

1 WRF-ARW hybrid EnKF-Varc Thompsond MYNNb RRTMGe RUC GFS-Control

2 WRF-ARW rEnKfa Thompson MYNN RRTMG RUC GEFS

3 WRF-ARW rEnKf Thompson MYNN RRTMG RUC GEFS

4 WRF-ARW rEnKf Thompson MYNN RRTMG RUC GEFS

5 WRF-ARW rEnKf Thompson MYNN RRTMG RUC GEFS

6 WRF-ARW rEnKf Thompson MYNN RRTMG RUC GEFS

7 WRF-ARW rEnKf Thompson MYNN RRTMG RUC GEFS

8 WRF-ARW rEnKf Thompson MYNN RRTMG RUC GEFS

9 WRF-ARW rEnKf Thompson MYNN RRTMG RUC GEFS

10 WRF-ARW rEnKf Thompson MYNN RRTMG RUC GEFS

a Re-centered Ensemble Kalman Filter
b Mellor-Yamada-Nakanishi-Niino scheme (Mellor and Yamada 1982;
Nakanishi 2001; Nakanishi and Niino 2004)
c Wang and Wang (2017)
d Thompson and Eidhammer (2014)
e Iacono et al. (2008)

a highly dimensional input space in which effective data
visualization is effectively impossible.

In this paper we intend to examine the feasibility
of implementing flow regime dependent bias correction
techniques. In Section 2, the neighborhood verification
methodology is defined and techniques for clustering at-
mospheric flow patterns are described. The verification
and calibration of CAM forecasts generated during the
2019 Spring Experiment is performed in section 3. Sec-
tion 4 outlines the results of the SOM implementation. An
appendix containing technical details of the SOM imple-
mentation is also included .

2. Methods

a. Convection Permitting Ensemble Configuratrion

For the past three years, the Multiscale Data Assimi-
lation and Predictability (MAP) group at the University
of Oklahoma has run a 3km resolution WRF-ARW ar-
chitecture CAM ensemble in the annual NOAA Spring
Forecast Experiment. In 2019, the model was initial-
ized at 0000z every weekeday during the SFE and ran
through the 36 hour lead time. Though all forecast lead
times were considered, emphasis was placed on next-day
time-scale forecasts (f21-f27 hour lead times). Synoptic
and mesoscale observations were assimilated with a sim-
ilar model configuration as the NCEP High Resolution
Rapid Refresh Ensemble (HRRRE), but with the addition
of a 3d Ensemble-Variational (EnVar) hydbrid data assim-
ilation system developed in Wang and Wang (2017) and
evaluated in Duda et al. (2019). This scheme assimilated
hourly High Resolution Rapid Refresh (HRRR) forecasts
between 1800-0000z and NEXRAD reflectivity data ev-
ery 20 minutes from 2300-0000z on the day preceding ini-
tialization (Clark et al. 2019). Specific ensemble member
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configurations and parameterization schemes are listed in
Table 1.

b. Neighborhood Verification Framework

For each forecast case, a domain of interest was de-
fined based on expected convective trends. Within the do-
main, the neighborhood maximum ensemble probability
(NMEP) method was used to generate probabilistic fore-
casts (Schwartz and Sobash 2017). Furthermore, corre-
sponding observed NEXRAD data was interpolated bi-
linearly to the WRF grid. These observations were thresh-
olded (Table 2) and used to assign a deterministic event/no
event rating to each gridpoint over the times of interest.
Using this data, the Brier Score (Brier 1950), BS f or was
computed for each lead time over each forecast case.

Using observational data assimilated from the National
Severe Storms Laboratory’s (NSSL) Multi-Radar/Multi-
Sensor System (MRMS), a reference climatology was as-
sembled for all forecast variables listed in table 2. This cli-
matology was used to compute the reference Brier Score,
BSre f against which variable specific model skill is eval-
uated. To facilitate this comparison, the Brier Skill Score
(Brier 1950), BSS, was computed for each case according
to the standard formula,

BSS = 1−
BS f or

BSre f
(1)

In order to gauge forecast bias and potential skill, a reli-
ability and resolution analysis was performed. Standard
reliability diagrams (RDs) and receiver operating char-
acteristic (ROC) curves were produced for each forecast
lead time. The area under the curve (AUC) of each ROC
curve was calculated and used for objective classification
of model resolution.

These analyses are carried out in two stages. In the first
stage, model output is verified in localized regions where
convective activity is most likely to occur on each day. By
definition, these areas of interest (AOIs) change from day
to day and thus the results of this stage may not generalize
to larger scales. In the second stage, we expand our scope
and verify model performance over a fixed verification do-
main (Figure 1).

c. Regime Clustering: SOMs

We choose to examine atmospheric conditions at 00z
as it is near the typical peak of next-day severe convec-
tive activity. Specifically, 500mb heights, u and v com-
ponents of 850mb-500mb bulk shear and surface based
CAPE are chosen as input variables. To characterize at-
mospheric states, we utilize 00z initialized 0.5 degree grid
spaced Global Forecast System (GFS) analyses generated
during the month of May from 2008-2018. 2019 data is
excluded from the clustering to avoid bias as we intend to
focus our efforts on verifying 2019 HWT forecasts.

FIG. 1. The outer boundary represents the edge of the verification
and assimilation domain for the SOM regime clustering. Interior lines
represent domains within which regional bias correction will be per-
formed.

As a compromise between efficiency and resolution, the
GFS data is upscaled to 1x1 degree grids over a CONUS
domain of interest (Figure 1). Upscaling is achieved by
simple averaging over the grid with the resulting value
being assigned to the grid centroid. For each predictor,
the value at the centroid is appended to a vector here-
after referred to as a feature vector. Hence, each fea-
ture vector represents a forecast case and will have length
no.o f grids× 4. These feature vectors may then be clus-
tered into distinct atmospheric regimes using the SOM ap-
paratus (Appendix I).

The number of patterns yielded depends on the size of
the SOM. Though we would ideally like a small number
of synoptic patterns given the small CAM forecast dataset
available, we initially utilize a large 7 × 4 SOM, yield-
ing 28 distinct synoptic regimes. This is done to facilitate
an attempt at harvesting the emergent properties of large
SOMs (Ultsch and Morchen 2009). K-means clustering
is performed on the trained SOM to generate 2 consen-
sus synoptic regimes. This number was chosen to ensure
the robustness of our analysis given the small number of
available forecasts.

Forecast cases are then classified using the Euclidean
distance as an objective similarity metric. The distance
between each feature vector and the vectors representing
the two synoptic regimes are calculated in the usual way.
The forecast case is then assigned to the synoptic regime
corresponding to the smallest distance.

d. CDF Bias Correction

To correct for bias, the cumulative distribution function
(CDF) correction method of Johnson and Wang (2012)
was employed as a statistical post-processing technique.
Given a forecast case, each forecast variable and its asso-
ciated threshold of detection was considered. The obser-
vation percentile corresponding to the threshold was de-
termined from a leave-one-out cross-validated distribution
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FIG. 2. 28 class SOM trained on 500mb heights (black contours),
surface based CAPE (shaded) and 850-500mb bulk wind shear (arrows).
Neighboring classes are objectively more similar than those father away.

of observations (Wilks and Hamill 2007). The computed
percentile was then used to determine the forecast value
at the corresponding percentile position. This value was
taken to be the CDF corrected forecast threshold. For ex-
ample, if the uncorrected forecast threshold for radar re-
flectivity was the 95th percentile of observations, then the
corrected forecast threshold would be replaced by the 95th
percentile value of the forecast distribution.

Calibration is also performed in two stages. In the first
stage, distribution functions were assembled from fore-
casts and observations within each AOI, following the
cross-validation method described above. All three vari-
ables within each forecast case were corrected in this fash-
ion. Statistical significance testing using the bootstrapping
technique of Hamill (1999) was then performed to deter-
mine the usefulness of the applied calibration.

The second stage of calibration is performed over the
fixed domain. To explore the effects of regime and re-
gional bias, we utilize a multifaceted approach. Firstly,
each forecast is corrected using a cross-validated distri-
bution assembled over all forecast cases. Secondly, fore-
casts cases are sorted and classified by synoptic regime.
Forecasts within each regime are corrected using cross-
validated distributions assembled from similarly classified
forecast cases over the entire fixed domain. In both cases,
we also partition the fixed domain into 4 regions based on
the expected locations of regional bias (Figure 1). Each
region is CDF corrected using forecasts and observations
taken only from within that region.

FIG. 3. A k-means aided reduction of the 28-class SOM to 8 primary
patterns. Shaded portions represent surface based CAPE, black contours
denote 500mb heights and wind arrows denote 850-500mb bulk shear
flow. The numbers above each diagram indicate the number of climato-
logical days contained within each class. Case 1 denotes a marginally
supportive severe environment, while case 2 suggests a more robust pat-
tern.

3. Results and Discussion

a. Regime Clustering

The 28 atmospheric regimes classified by the SOM
method are presented in a. Distinct regimes are readily
apparent. The upper left of the map is consistent with mid-
level ridging east of the plains mediating the advection of
moist Gulf air into the Plains, resulting in a swath of high
CAPE stretching from south Texas through western Mis-
souri. Notably, the dominant shear pattern associated with
strong advection of CAPE confirms that this pattern is a
product of onshore surface flow. The lower right of the
map suggests a strong zonal shear pattern and weak CAPE
over the Plains concomitant with ridging to the west. This
pattern precludes the advection of moisture from the south
yielding a relatively stable environment.

The results of the k-Means reduction is presented in
Figure 3. The 26 forecast cases were split equally between
both regimes (Table 2). Case 1 demonstrates a marginal
severe pattern, with largely zonal shear and marginal
CAPE advection from the south. This case is represen-
tative of the nodes in the lower right of the SOM. On the
other hand, case 2 presents an active severe regime with
moderate to high CAPE present at most points east of the
OK panhandle and directional bulk shear evident. This
case is representative of the upper left nodes of the SOM.
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b. Verification on HWT Domains

1) NO BIAS CORRECTION

Within the areas of convective interest (AOI), uncal-
ibrated composite radar reflectivity forecasts are more
skillful than climatology at 0.05 significance at all consid-
ered lead times. Relative Operating Characteristic (ROC)
analysis yielded areas under the curve (AUC) in excess of
0.8 for all considered lead times. This exceeds the typical
0.7 threshold suggested as a discriminator of forecast reso-
lution. Attributes diagrams were produced and the associ-
ated reliability curves suggested that model performance
was generally skillful, though negatively impacted by an
over-forecasting bias.

Hail size forecasts generated using the maximum esti-
mated size of hail (MESH) retrieval method were gener-
ally unskilled at all considered lead times. Significance
testing confirmed this finding at and above the 0.05 sig-
nificance level. Attributes diagrams indicated poor relia-
bility, with a strong systematic over-forecasting bias (Fig-
ure), while ROC curves suggest good discrimination with
AUC values close to 0.8.

FIG. 4. Subplot showing the hourly averaged Brier Skill Score for
radar reflectivity (left) and maximum estimated size of hail (right) taken
over all forecast cases over all POIs

2) BIAS CORRECTION

CDF bias correction did little to correct the radar reflec-
tivity over-forecast bias. In fact, bias correction slightly
degraded forecast skill, though this degradation was not
statistically significant. We hypothesize that bias averag-
ing occurs due to the fact that the cumulative distribution
function is sampled from different bias regimes owing to
the lack of fixed domain in this stage of analysis.

Application of CDF correction to the MESH retrievals
leads to vastly improved model skill, indicating consis-
tently high bias over the entire WRF domain (Figure 4).
However, the corrected forecasts are still less skillful than
climatology at the 0.05 significance level. A limited explo-
ration was conducted utilizing 0−3 km updraft helicity as

a proxy for hail size forecasting. Using 125 m2 s−2 as the
event threshold for 1” hail yields a large increase in skill
from uncalibrated hail size forecasts at all considered lead
times.

TABLE 2. Absolute Brier Scores for each forecast case under dif-
ferent calibration schemes. The first column denotes the synoptic clus-
ter (Figure 3) to which the forecast case belongs. The second column
contains the forecast case’s unique identifier. The remaining columns
contain the uncalibrated Brier Score, fixed domain CDF corrected Brier
score and regionally-corrected Brier score, respectively.

Class Case Reference Brier Score Raw Brier Score CDF Brier Score RCDF Brier Score

1 1 0.0506 0.1372 0.1106 0.0622

1 2 0.1502 0.1619 0.1370 0.1178

1 3 0.0674 0.0918 0.0736 0.0691

1 5 0.1449 0.1687 0.1599 0.1552

1 9 0.1080 0.1565 0.1171 0.0761

1 10 0.1029 0.1637 0.1444 0.0985

1 11 0.0926 0.1290 0.1084 0.0883

1 12 0.0923 0.1309 0.1142 0.0933

1 13 0.0389 0.1036 0.0743 0.0444

1 17 0.1263 0.1813 0.1466 0.0908

1 19 0.0708 0.1041 0.0875 0.0571

1 25 0.1065 0.1580 0.1369 0.1165

1 26 0.1214 0.1595 0.1456 0.1231

2 4 0.0694 0.0942 0.0800 0.0691

2 6 0.0930 0.1054 0.0951 0.0844

2 7 0.1668 0.1923 0.1697 0.1400

2 8 0.1623 0.2592 0.2100 0.1546

2 14 0.0715 0.1089 0.0899 0.0751

2 15 0.1153 0.1287 0.1130 0.0920

2 16 0.1619 0.1707 0.1409 0.1160

2 18 0.1475 0.1879 0.1511 0.1012

2 20 0.1037 0.1517 0.1372 0.0972

2 21 0.0913 0.0963 0.0872 0.0673

2 22 0.0913 0.1382 0.1258 0.0900

2 23 0.1330 0.1462 0.1276 0.0940

2 24 0.1294 0.1287 0.1125 0.0857

The preliminary data presented in the following sec-
tions is drawn solely from the 24-hour lead time and is
taken to be representative of the next-day lead time.

c. Verification on Fixed Domain

1) NO BIAS CORRECTION

Reflectivity forecasts generated on the fixed domain
were generally of lower skill than those on HWT domains.
Though, this is to be expected given the comparatively
larger area covered by the fixed domain. Evaluation of do-
main averaged model bias shows strong regional bias with
positive bias noted west of the Rockies and over the north-
ern Great Plains. These areas of regional bias are roughly
spatially correlated with our fixed domain subdivisions.

Overall, reliability analysis indicates that forecasts suf-
fer from significant over-forecasting bias and are generally
unskilled (Figure 5). Though, a ROC AUC of 0.80 sug-
gests that the model discriminates well between events and
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FIG. 5. (left) A reliability diagram performed in the fixed domain
over all calibration regimes. The colored lines are reliability curves un-
der different calibration regimes. The solid diagonal line is the line of
perfect reliability (no forecast bias). The dashed diagonal line is the line
of no skill - reliability curves above (below) this line represent forecasts
that are skilled (unskilled). (Right) Receiver Operating Characteristic
plots taken over each calibration routine in the fixed domain. Note that
the probability of detection (POD) remains the same in each case, while
the false alarm ratio progressively decreases. The RCDF routine pro-
vides the lowest false alarm ratio.

non-events. This suggests that poor model skill is mainly
an artifact of poor calibration rather than a lack of predic-
tive ability.

2) CDF BIAS CORRECTION

CDF bias correction performed over the fixed domain
significantly improved skill in all forecast cases (Table 2;
Figure 6), indicating the presence of systematic bias in
each forecast case. However, average forecast skill re-
mains negative (Table 4), suggesting the inability of CDF
bias correction to sufficiently alleviate variable large-scale
bias. Reliability analysis concurs with this finding, show-
ing a marginal, yet perceptible improvement in the relia-
bility curve compared to the calibrated case (Figure 5).

Given the strong performance of the model in the local-
ized HWT domains and decent ROC AUC metrics in the
fixed domain, the aforementioned results suggests that the
CDF method is not fully accounting for extant sources of
model bias.

3) REGIME DEPENDENT CDF BIAS CORRECTION

Considering all 26 cases together, it is apparent that
regime dependent CDF corrected forecasts did not dif-
fer significantly from forecasts calibrated using the naı̈ve
CDF scheme. Performance of a regime-wise comparison
similarly showed no significant intra-regime improvement
in skill.

4) RCDF BIAS CORRECTION

RCDF forecasts were significantly more skillful and
less biased that CDF forecasts (Figure 5). Furthermore,

FIG. 6. A line plot of absolute Brier scores for each forecast case, in
each calibration paradigm. Brier scores in the two calibration paradigm
were significantly lower than in the uncalibrated paradigm. Brier scores
in the RCDF calibrated paradigm were significantly lower than in the
CDF calibrated paradgm.

TABLE 3. This table presents the results of calibration performed
on forecast cases segregated by prevailing synoptic regime. The first
half of the table presents results of the calibration performed on cases
resident within the first regime, while the second presents the same for
cases within the second regime.

Class Case CDF Brier Score RCDF Brier Score

1 1 0.1115 0.0602

1 2 0.1349 0.1177

1 3 0.0731 0.0685

1 5 0.1598 0.1540

1 9 0.1126 0.0737

1 10 0.1441 0.0952

1 11 0.1079 0.0868

1 12 0.1144 0.0931

1 13 0.0733 0.0432

1 17 0.1425 0.0872

1 19 0.0872 0.0557

1 25 0.1366 0.1161

1 26 0.1450 0.1210

2 4 0.0804 0.0733

2 6 0.0954 0.0846

2 7 0.1697 0.1409

2 8 0.2126 0.1555

2 14 0.0911 0.0758

2 15 0.1136 0.0928

2 16 0.1406 0.1169

2 18 0.1552 0.1042

2 20 0.1381 0.1012

2 21 0.0879 0.0689

2 22 0.1262 0.0931

2 23 0.1276 0.0949

2 24 0.1123 0.0868
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TABLE 4. Case averaged Brier Scores and Brier Skill Scores under
different calibration regimes. The first column corresponds to calibra-
tion applied to all cases without consideration for prevailing synoptic
regime, while the second column presents the results of regime seg-
regated calibration efforts. For the second column, scores from each
synoptic regime are summed and then averaged together to facilitate
accurate comparison with the first column.

Separate Calibration No Yes
Average Raw Brier Score 0.1444 0.1444
Average CDF Brier Score 0.1230 0.1228

Average RCDF Brier Score 0.0947 0.0947
Average Raw BSS -0.3364 -0.3364
Average CDF BSS -0.1365 -0.1367

Average RCDF BSS 0.1245 0.1238

the RCDF paradigm produce the only instance of posi-
tive case-averaged model skill (Table ). This confirms our
hypothesis that on large domains, region-blind CDF ap-
proach averages biases from dissimilar regions, thereby
leading to ineffective calibration. The RCDF approach
rectifies this deficiency.

Thus, it is apparent that these errors are not uniformly
distributed over the domain, but are instead regionally con-
centrated. Moreover, the biases within these regions are
likely persistent over most (if not all) forecast cases and
thus constitute a regionally constrained systematic bias.
Given this persistence, it is likely that these errors arise out
of some deficiency in the model’s physics, architecture or
parameterization schemes.

5) REGIONAL AND REGIME DEPENDENT CDF BIAS
CORRECTION

Similar to the regime dependent CDF bias correction
scheme, there was no significant improvement in skill
under the regional and regime dependent CDF bias cor-
rection scheme when all cases were considered together.
However, a regime-wise comparison showed that there
was a statistically significant improvement in skill within
regime 1 under this calibration scheme, while there was
no significant improvement within regime 2.

Given this result, we theorize that the first regime,
which corresponds to a marginal severe environment,
drives regionally dependent bias more strongly than the
second more favorable synoptic regime. We further hy-
pothesize that the lack of a similar result within regime 2
could be a result of regional characteristic averaging due to
the reduction of 28 synoptic cases into 2. That is, regime 2
may not be fully representative of all cases assigned to it,
in a synoptic sense. Though, given sample size constraints
we cannot definitely comment on this disparity.

4. Conclusion

In this study, 2019 NOAA HWT SFE 24-hour lead time
forecasts are verified and calibrated using a naı̈ve CDF and
newly proposed RCDF approach. The RCDF approach
enables the exploration of the impact of regional forecast
biases on model skill.

On localized HWT domains, the model generates
highly skilled forecasts for hourly maximum composite
radar reflectivity. CDF bias correction does not signifi-
cantly improve model skill on this scale. On the expanded
fixed domain, uncalibrated forecasts show no skill with re-
spect to reference forecast. CDF bias correction induces a
statistically significant improvement in skill, but forecasts
still show no skill with respect to the reference forecast.
RCDF forecasts increase skill significantly compared to
both CDF and uncalibrated forecasts and are the only fore-
casts to demonstrate positive skill with respect to the ref-
erence forecast.

Using the SOM technique, we effectively facilitated the
identification and clustering of physically realistic synop-
tic patterns occurring during the May severe weather sea-
son over a 9-year period. Using a k-means clustering rou-
tine, these patterns were combined to produce a reason-
able representation of the two most dominant May severe
weather patterns.

Naı̈ve use of these SOM-derived synoptic classifica-
tions to remove bias from meteorologically similar syn-
optic flow regimes separately did not generally improve
skill of the May 2019 CAE forecasts compared to regime-
blind bias correction. The one exception to this observa-
tion was noted in regime 1. Within this region, the regime-
dependent RCDF scheme induced a statistically signifi-
cant improvement in forecast skill compared to the appli-
cation of regime-blind RCDF correction within the same
regime. A similar result was not observed in regime 2.

We hypothesize that the lack of a similar result within
regime 2 could be a result of regional characteristic av-
eraging due to the reduction of 28 synoptic cases into 2.
That is, regime 2 may not be fully representative of all
cases assigned to it, in a synoptic sense. Given sample
size constraints we cannot definitely comment on this dis-
parity, though we plan further study to investigate this de-
pendence. In particular, we plan to work toward the gener-
alization and application of these methods to experimen-
tal HRRRE forecasts, given the sizable repository of such
forecasts. This will allow for a more robust representation
and examination of the dominant synoptic states.
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APPENDIX

SOM Methodology

The SOM is a method of unsupervised competitive ma-
chine learning belonging to the class of artificial neu-
ral networks. In its simplest form, the SOM is a 2-
dimensional grid of connected neurons (grid points). To
each neuron we assign a vector of the same length as
the feature vector hereafter referred to as weights. These
weights are intilized either randomly or by sampling a 2-
dimension principal component analysis subspace. This is
discussed in some detail later on in the appendix.

At the most basic level, the training of the SOM grid is
a competitive auction in the sense that neurons compete to
”win” each feature vector. The neuron that wins a feature
vector auction will be closest to that feature vector in the
Euclidean distance sense. This neuron is termed the best
matching unit (BMU) and its weight is shifted closer to the
feature vector that was won. In contrast to K-Means clus-
tering, the SOM is endowed with a neighborhood function,
hence any update of the BMU will also induce a shift in
the weights of its neighbors (Wang et al. 2019). Further-
more, a learning rate parameter is defined which controls
the degree to which a single update moves the winning
neuron.

The training process is repeated for all 277 feature vec-
tors over a user defined training length. As the train-
ing progresses, the neighborhood radius and learning rate
are slowly reduced according to the neighborhood func-
tion chosen. Depending on the grid initialization chosen,
the training processes may be either single staged or two
staged. If the grid is initialized using random values, a
coarse training must first be performed to loosely fit the
map to the geometry of input data, followed by a fine
tuning training to adjust the fit. On the other hand, use
of Component Analysis (PCA) initialization negates the
need for a two-step approach and can speed convergence
of the technique in some circumstances (Kohonen et al.
1996). Given positive results from classification studies
using PCA, we choose this initialization method and use a
single fine-tuning training phase adopting parameters from
Wang et al. (2019) and Kohonen et al. (1996).

Recent developments in SOM theory suggest that large
maps can be used to facilitate emergent clustering, that
is the identification of small data clusters not discernible
using smaller scale maps (Ultsch and Morchen 2009).
This is a good consideration as it should enable the iden-
tification and classification of rare atmospheric patterns.
Though, given the small forecast sample size in this study,
a study of these emergent properties is not feasible.

TABLE A1. Som configuration

Parameter Value

Init. PCA

No. Inputs 277

Dimensions (x,y) 7×4

Classes 28

Training length 277×100

Neighborhood Radius 3

Neighborhood Function Gaussian

Learning Rate 0.02

Given this shortage of CAM forecast case, we must fur-
ther reduce the 28 case in order to ensure a large enough
sample size for comparison among regimes. K-means
clustering is applied to post-training weights to facili-
tate an averaging of the 28 cases into 2 most probable
cases. This configuration offered the most robust statis-
tical framework, but also increased the chance of a fore-
cast case being classified with a synoptic pattern not accu-
rately/fully depicting the conditions in that case.
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