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ABSTRACT 

 This study investigates when an RF algorithm’s day 1 severe hail probabilities differ from 

corresponding Storm Prediction Center (SPC) human-generated probabilities by at least one SPC outlook 

category. The goal of this study is to determine when an RF is most and least likely to add value to day 1 

SPC human hail forecasts. RF forecasts are trained on forecast variables from the High-Resolution 

Ensemble Forecast System, version 2.1 (HREFv2.1) and observed SPC hail reports, using 627 days of 

data from May 2018 through April 2020. RF forecasts are compared against a continuous version of 

human-generated day 1 SPC hail forecasts, produced daily at 06z.  

Analysis shows that the RF is especially skillful in reducing false alarm by forecasting one outlook 

category lower than that of the SPC. Additionally, when the RF forecasts at least one outlook category 

higher (lower) than the SPC, ensemble mean storm attribute variables including maximum 2-5 km updraft 

helicity, maximum upward vertical velocity, and maximum downward vertical velocity tend to have higher 

(lower) absolute values. Meanwhile, the distribution of these variables does not change much when the 

SPC forecasts at least one outlook category higher or lower than the RF. These findings suggest that RFs 

add value to the SPC by calibrating their probabilities based on the strength of simulated storms, while 

SPC forecasters add value to the RF by analyzing other (meteorological and non-meteorological) 

variables. 

 

1. INTRODUCTION1 

 

 Random forests (RFs) produce skillful, 

reliable probabilistic guidance for next-day 

precipitation (e.g., Gagne et al. 2014; Herman and 

Schumacher 2018; Loken et al. 2019) and severe 

weather (e.g., Loken et al. 2020; Hill et al. 2020), 

and they are starting to be incorporated in real-

time forecasting operations (e.g., Schumacher et 

al., in press). Indeed, Loken et al. (2020) showed 
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that over many cases, day 1 RF severe hail 

probabilities are now at least as good as 

corresponding Storm Prediction Center (SPC) 

human forecasts. However, machine learning (ML) 

methods have difficulty extrapolating beyond the 

relationships contained in their training dataset, 

which occasionally leads to poor performance. 

This can pose a problem for forecasters, since 

useful operational prediction tools must be 

trustworthy and reliable (Karstens et al. 2015). By 
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studying the error characteristics of ML methods in 

severe weather, forecasters and researchers may 

be able to identify when ML forecasts are 

trustworthy and when they may struggle 

(McGovern et al. 2017). 

 One way to determine when RF forecasts 

are trustworthy is to compare them to analogous 

human forecasts. Loken et al. (2020) found that 

RF and corresponding SPC severe weather 

forecast probabilities often covered similar areas 

but had different magnitudes. However, a 

systematic analysis of when, where, and how 

often RF forecasts substantially differ from SPC 

human forecasts has never been done. This study 

aims to fill that knowledge gap by exploring 

differences between RF and SPC day 1 hail 

forecasts, with the quality of RF deviations from 

SPC guidance assessed using observed SPC hail 

reports. Through this analysis, this study hopes to 

determine when an RF algorithm is most and least 

likely to add value to day 1 SPC human hail 

forecasts. 

 

2. DATA & METHODS  

 

Variable Description (Units) 

2-5 UH Maximum daily simulated 2-5 

km updraft helicity (𝑚2/𝑠2) 

MAXUVV Maximum daily simulated 

upward vertical velocity 𝑚/𝑠) 

MAXDVV Maximum daily simulated 

downward vertical velocity (𝑚/

𝑠) 

Table 1: Abbreviations and explanations of the 

variables analyzed in this study. 

 

 Using the method discussed in Loken et 

al. (2020) and Loken (2021), a severe-hail-

predicting RF is trained and verified on 627 days 

of HREFv2.1 (Roberts et al. 2020; Loken 2021) 

and observed SPC hail report data. While the RF 

considers a variety of forecast field inputs from the 

HREFv2.1 (Table 4.3 in Loken 2021), this study 

primarily analyzes the variables described in Table 

1. 

To align with SPC’s objective to forecast 

severe weather within 40-km of a point, we predict 

the probability of at least one observed hail report 

falling within an 80 km grid box each day. 

Specifically, observed SPC hail reports are 

remapped to an approximately 80 km grid and are 

recorded in a binary manner, where a value of one 

(zero) indicates one or more (zero) observed daily 

SPC hail reports in the given box. RF predictions 

are output on an approximately 80-km grind that 

covers the contiguous United States (CONUS; Fig. 

1). 

 

 
Figure 1: RF analysis domain (gray shading) and 

forecast points (blue dots). 

 

Murphy (1993) defines three 

measurements of forecast goodness: consistency, 

quality, and value. Here, we are interested in 

assessing value, which can be difficult to quantify. 

For this paper, we assume that the RF potentially 

adds value to SPC forecasts when the RF’s 

forecast probabilities differ from those of the SPC 

by more than one outlook category (Table 2).  

An important consideration is that it is 

difficult to compare discrete SPC probability 

forecasts with continuous RF forecast 

probabilities. Therefore, we analyze experimental 

continuous SPC probabilities, created in the same 

way as described by Loken et al. (2020). The 

impact of significant severe weather on a forecast 

probability level is also a limitation, as it can 

impact the SPC category level of a given data 

point even though significance is not considered in 

this study.  
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Table 2: Day 1 SPC convective outlook probabilities by 

category for hail. MRGL = marginal, SLGT = slight, ENH 

= enhanced, MDT = moderate, and HIGH = high. 

 

 It is also important to note that SPC 

forecasters must consider more than just 

meteorological conditions when issuing their 

probabilities. They must be mindful of what risk 

category their probabilities may trigger and how 

their forecasts will be interpreted by the public. So, 

they must consider impact and meteorological 

probability when making their forecasts, while the 

RF only considers quantitative likelihood and 

meteorological significance. 

 Figures 2a-2e are bar charts binned by 

SPC probability of hail, based on the day 1 SPC 

outlook probabilities in Table 2. The data within 

this subset is then conditioned based on the RF 

probabilities of hail, and then grouped by this 

percentage on the x-axes. The y-axes of all the 

figures shows the number of forecasts in each bin. 

Finally, the data was further adapted to split the 

forecasts in each RF bin by “yes obs” and “no 

obs”, The percentage above each red bar 

indicates the percentage of yes observations out 

of the total number of forecasts in each bin. For 

example, the third bar from the left in Figure 2c 

contains all of the points in the original dataset that 

had a 15-30% (SLGT) SPC hail probability, and a 

15-30% RF hail probability. 22.7% of the forecasts 

in this bin had hail reports associated with them as 

well. Similarly, the first bar on the left indicates 

forecasts with an SPC probability of 15-30% and 

an RF probability of 0-5%, and only 4%of the 

forecasts in this bin had associated hail 

observations reported. Each of these figures 

follows the same idea. 

 Violin plots are created for variables 

deemed most important to the RF by the Python 

tree interpreter model (Saabas 2016; Loken 2021) 

and show the distribution of these variables given 

a particular SPC and RF forecast outlook 

category. Figures 3a and 3b show two sample 

violin plots of simulated daily maximum 2-5 km 

updraft helicity (2-5 UH) compared with forecast 

probabilities. Figure 3b follows the same basic 

method for conditioning the data set that was used 

for the bar plots shown in Figure 2, however the y-

axes differ in the violin plots. Instead of having the 

number of forecasts in each bin plotted on the y-

axis, the violin plots have the range of 2-5 UH 

values in each bin. Figure 3a follows the same 

logic, however the RF and SPC conditioning is 

flipped. So, the second violin from the left in figure 

3a includes all the forecast points that had a 5-

15% RF probability and a 5-15% SPC probability 

of hail and shows the range of 2-5 UH values 

associated with those forecasts. Figures 4 and 5 

show violin plots that follow the same conditioning 

as Figure 3, but for two other variables of interest. 

These variables are shown below in Table 2. 

Extremities differ among these three variables. 

Higher values of 2-5 UH and MAXUVV and lower 

(more negative) values of MAXDVV indicate 

stronger, more intense storms. 

 

3. RESULTS 

 

 

a) 
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Figure 2: Bar charts showing different SPC probability 

bins further conditioned by the RF. Fig. 2a shows less 

than 5% SPC probability, fig. 2b shows 5-15% SPC 

probability, fig. 2c shows 15-30% SPC probability, fig. 

2d shows 30-45% SPC probability, and fig. 2e shows 

greater than 45% SPC probability. Each number above 

the bars represents the percentage of yes observations 

associated with the number of forecast points in that 

particular bin. 

 

 The bar charts shown in Figures 2a-2e 

show that the RF tends to forecast the majority of 

its points plus or minus one category from the 

SPC, which implies that they are generally 

forecasting similar probabilities. In Figures 2b-2e, 

the RF consistently has the highest number of 

forecasts in the bin that is one category lower than 

what the SPC predicts. This trend in the data tells 

us that the RF may be skilled at reducing false 

alarm in human forecasts. While the RF continues 

to follow this trend in Figure 2e, it is incorrect in 

doing so. This is because when the SPC forecasts 

an MDT hail probability, there are high 

percentages of hail observations associated with 

the forecast points in the SLGT and ENH RF bins. 

However, this observation may be occurring 

because of the relatively low sample size the bins 

in this figure have, thus conclusions cannot be 

drawn. The RF may also be skilled at enhancing 

POD, as represented by the percentage of hail 

observations in the MDT% RF probability bins of 

each figure, but especially in the middle categories 

(Figures 2b, 2c, and 2d).  

 

 

b) 

c) 

d) 

e) 
a) 
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Figure 3: Violin plots for 2-5 UH values conditioned by a 

5-15% RF (top) and 5-15% SPC (bottom) hail 

probability.  

 

 

 
Figure 4: Violin plots for MAXUVV values conditioned 

by a 5-15% RF (top) and 5-15% SPC (bottom) hail 

probability. 

 

 

 
Figure 5: Violin plots for MAXDVV values conditioned 

by a 5-15% RF (top) and 5-15% SPC (bottom) hail 

probability. 

 

 Figures 3, 4, and 5 all show sample violin 

plots for 5-15% RF hail probabilities conditioned 

by the SPC probabilities (Figs. 3a, 4a, and 5a), as 

well as the 5-15% SPC hail probabilities 

conditioned by the RF forecasts (Figs. 3b, 4b, and 

5b). In Figure 3, consider the violins outlined in red 

to be the “benchmarks”, as they represent the 

range of 2-5 UH values measured when (in 3a) the 

RF forecasted a 5-15% probability of hail and the 

SPC forecast the same, and (in 3b) where SPC 

gave a 5-15% probability and the RF had the 

same. Figure 3b shows that when the RF deviates 

from the SPC by a category, say moving to a 15-

30% hail probability, there is a clear increase in 

the 2-5 UH values associated with those forecast 

points. This consistently increasing trend in RF 

probabilities is noticeable not only with 2-5 UH but 

can be seen when looking at MAXUVV in Figure 

4b as well. MAXDVV follows the same trend as 

well, but the trend appears negative because more 

b) 

a) 

b) 

a) 

b) 
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negative MAXDVV values indicate stronger 

simulated storms. This trend among these 

ensemble mean storm attribute variables suggests 

that the RF strongly emphasizes higher (and 

lower) absolute values of variables such as 2-5 

UH, MAXUVV, and MAXDVV because they are 

indicative of stronger (weaker) simulated storms. 

 Conversely, Figure 3a shows that when 

the SPC forecasts at least one outlook category 

higher or lower than the RF, the distribution of 

simulated storm attribute variables does not 

change much. This is consistent in Figures 4a and 

5a, because as the SPC deviates from the RF, 

MAXUVV and MAXDVV values fluctuate slightly 

but do not significantly change. This supports the 

notion that the RFs add value to the SPC by 

calibrating their probabilities based on the strength 

of simulated storms, while SPC forecasters add 

value to the RF by analyzing both meteorological 

and non-meteorological factors. Both of these 

findings are consistent throughout all SPC and RF 

bins of other outlook categories as well.  

 

4. CASE STUDY 

 

 

 

 
Figure 6: Hail probability forecasts (colored shading) on 

26 May 2019 by the RF (top) and SPC (bottom). 

Locations with at least one observed SPC hail report are 

contoured and shaded black. Two areas of interest have 

been circled and are discussed in the text.  

 

RF and SPC forecast probabilities of hail 

from 26 May 2019 are shown in Figure 6. This 

case study provides a clear example of how the 

RF places such a strong emphasis on high values 

of storm attribute variables such as 2-5 UH and 

MAXUVV. It also shows another example of how 

the RF can add value to the SPC forecasts. Two 

areas of interest have been circled on the figures 

to the left. The blue circle covers an area in 

southeastern Montana, and the green circle 

covers a much broader range of the Central 

Plains, including much of western Kansas and the 

area where Oklahoma, Texas, Kansas, Colorado, 

Nebraska, and New Mexico meet up.  

The green circle, covering a broad region 

of the Central Plains, the RF forecasted 

significantly higher probabilities of hail than the 

SPC, even deviating by two categories in certain 

areas. Looking at the pink area on these figures 

and the same area highlighted in Figures 7 and 8, 

the RF clearly placed a large importance on the 

very high 2-5 UH and MAXUVV values. Looking at 

the blue circle, the RF forecasted one category 

higher than the SPC did and extended its forecast 

to cover a greater area than the SPC. Figures 7 

and 8 shows that in this same area, there are 

patches of relatively higher 2-5 UH and MAXUVV 

values.  

 

 

a) 

b) 
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Figure 7: Map plotting the 2-5 UH values from May 26th, 

2019. Darker areas represent higher 2-5 UH values. 

The areas of interest are identified by the blue and 

green circles. 

 

 

 
Figure 8: Map plotting the MAXUVV values from May 

26th, 2019. Darker areas represent higher MAXUVV 

values. The areas of interest are once again identified 

by the blue and green circles. 

 

5. DISCUSSION/ SUMMARY/ CONCLUSIONS 

 

 This study found that in most cases, the 

RF and the SPC are more alike than different 

when it comes to forecasting hail probabilities. The 

RF generally differed from the SPC by no more 

than one outlook category. Most frequently, the RF 

probabilities fell one outlook category below that 

forecasted by the SPC. Over many cases, the 

smaller RF probabilities were associated with 

lower observed report frequencies, suggesting the 

RF often successfully reduced false alarm 

compared to the SPC. When the RF forecast at 

least one outlook category higher (lower) than the 

SPC, storm attribute variables such as those 

discussed in this paper tend to have higher (lower) 

absolute values. This indicates stronger or weaker 

simulated storms. Conversely, the distribution of 

the simulated storm attribute variables did not 

change much when the SPC forecasts at least one 

outlook category higher or lower than the RF. 

These findings suggest that RFs add value to the 

SPC by calibrating their probabilities based on the 

strength of simulated storms, while SPC 

forecasters add value to the RF by analyzing other 

meteorological and non-meteorological variables. 

 Ultimately, it is hoped that the results of 

this study will help severe weather forecasters 

better utilize RF guidance in operations. 
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