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ABSTRACT 

Extreme rainfall events in the central U.S. have caused significant damage, underscoring the need 
for a better understanding of precipitation changes and their drivers. This study utilizes ERA5 data from 
1950 to 2023, focusing on the November to May period, to examine changes in winter and spring 
precipitation and the influence of teleconnections. Our analysis reveals notable increases in precipitation, 
particularly in spring, with the most recent period showing the highest values. Employing causal discovery 
methods, we identify significant causal relationships between teleconnections and extreme rainfall events. 
The Pacific-North American Pattern (PNA) and the Eastern Pacific Oscillation (EPO) emerge as key 
teleconnections with strong direct connections to extreme rainfall in the Upper Midwest and Ohio Valley. 
Furthermore, the study uncovers a complex network of interactions among various teleconnections, 
suggesting that the combined effects of multiple teleconnections must be considered to fully understand 
their impact on precipitation. These findings provide insights into the complex dynamics influencing 
precipitation patterns, hoping to aid in better prediction and management of extreme rainfall events. 

 
  

.1. INTRODUCTION  
 

The central United States is home to some 
of the most extreme weather phenomena on the 
planet, frequently experiencing flooding events 
from extended periods of intense rainfall 
(Mallakpour and Villarini 2015a). These extreme 
weather events cause catastrophic damage to 
infrastructure, agriculture, and properties, costing 
billions of dollars annually and affecting many lives 
across the nation (AghaKouchak et al. 2011a; 
Harding and Snyder 2014a; Zhang and Villarini 
2019). This underscores the urgent need to better 
understand the mechanisms driving extreme 
precipitation to improve preparedness and 
mitigation strategies. 

In the past, Harding and Snyder (2014) 
have run simulations using global climate models 
(GCMs) that have observed an increase in heavy 
rainfall events, a trend that is predicted to continue 
throughout the remainder of the century. This 
anticipated increase highlights the necessity of 
understanding the formation and dynamics of 
extreme precipitation events. Analyzing the factors 
contributing to these events is crucial for developing 
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predictive models and enhancing disaster response 
and management. 

A key aspect of understanding the diverse 
nature of extreme weather events is the study of 
teleconnections, which are large-scale climate 
anomalies that are related to each other over long 
distances. Teleconnections such as the El Nino-
Southern Oscillation (ENSO), the North Atlantic 
Oscillation (NAO), the Pacific North American 
Pattern (PNA), the Eastern Pacific Oscillation 
(EPO), the Western Pacific Oscillation (WPO) and 
the Arctic Oscillation (AO) can significantly 
influence weather patterns over vast regions, 
including the central United States. These 
teleconnections impact atmospheric circulation and 
can alter the frequency and intensity of extreme 
weather events, including heavy rainfall (Bates et 
al. 2001; Kretschmer et al. 2021; Yang et al. 2023). 

In this project we will be incorporating their 
indices into our causal network analysis. For 
instance, ENSO is known to have a profound 
impact on weather patterns across North America, 
with its positive phase (El Niño) typically associated 
with wetter conditions in the central United States, 
while its negative phase (La Niña) often correlates 
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with drier conditions (Kretschmer et al. 2021; 
Ropelewski and Halpert 1986). Similarly, the NAO 
affects the strength and position of the jet stream, 
which can influence weather systems and 
precipitation patterns in the Ohio Valley and Upper 
Midwest. Positive NAO phases usually result in 
milder and wetter winters, whereas negative 
phases bring colder and snowier conditions (Hurrell 
1995).  

The Pacific-North American (PNA) pattern, 
when positive, typically brings milder and drier 
winters to the central U.S., while a negative phase 
can lead to colder and wetter conditions (Leathers 
et al. 1991). The Eastern Pacific Oscillation (EPO) 
affects the temperature and precipitation patterns in 
the region; positive phases generally result in 
warmer conditions, while negative phases bring 
colder weather (Barnston and Livezey 1987). The 
Western Pacific Oscillation (WPO) can also 
influence the region's climate, with positive phases 
associated with milder weather and negative 
phases linked to colder conditions (Linkin and 
Nigam 2008). Lastly, the Arctic Oscillation (AO) in 
its positive phase typically leads to milder winters 
with reduced cold outbreaks, while its negative 
phase is associated with colder, more severe 
winters (Thompson and Wallace 1998). 

Despite significant research, a substantial 
gap remains in understanding the causal 
relationships between teleconnections and extreme 
rainfall events in the central United States. 
Teleconnections play crucial roles in developing 
extreme rainfall, but traditional methods have 
limitations in capturing these interactions (Bates et 
al. 2001; Kretschmer et al. 2021). Traditional 
statistical models, such as linear regression and 
correlation analyses, focus on identifying 
relationships between variables. However, these 
methods often struggle to distinguish correlation 
from causation, particularly with complex, nonlinear 
climate system interactions (Yang et al. 2023). For 
example, while correlations between 
teleconnections like ENSO and extreme rainfall 
patterns can be observed, the underlying 
mechanisms driving these relationships remain 
unclear. 

Given these limitations, more advanced 
methods are needed to capture the complex, 
nonlinear interactions within climate systems and 
provide clearer insights into causal relationships. 
Causal network-based machine learning models 
offer a promising solution. These models go beyond 
simple correlation analysis by employing algorithms 
that identify and quantify causal links between 

variables, offering a detailed understanding of how 
changes in one variable, such as a teleconnection 
index, can causally influence another, like extreme 
rainfall events (Kretschmer et al. 2021; Yang et al. 
2023). 

Therefore, our work leverages causal 
discovery to better understand how teleconnections 
influence the central U.S. by gathering and 
preprocessing data from the ERA5 dataset and the 
NOAA Physical Sciences Laboratory, focusing on 
key variables such as total precipitation and 
teleconnection indices. Utilizing these datasets, we 
apply causal discovery algorithms to construct 
causal networks that reveal the relationships 
between teleconnections and extreme rainfall 
events. We then analyze climatic precipitation 
trends and interactions within the causal networks 
to identify possible links between teleconnections 
and extreme rainfall events in the central United 
States.  

This study has the general goal of 
enhancing our understanding of how 
teleconnections influence extreme rainfall events in 
the central United States. To accomplish this, we 
have proposed the following specific objectives: (1) 
Analyze precipitation patterns over the central U.S. 
to apply to our causal discovery; (2) Dive deeper 
into the influence of teleconnections on extreme 
rainfall within our region; and (3) Develop a 
successful causal network model that enhances our 
understanding of extreme rainfall and potential use 
for prediction strategies. 
 
2. MATERIALS AND METHODS  
  
2.1 Data and Indices 
 

The ERA5 dataset is produced by the 
European Centre for Medium-Range Weather 
Forecasts (ECMWF) and provides hourly data from 
1940 to present with detailed records of 
atmospheric, oceanic, and land-surface variables 
(C3S 2018). For this study, we will utilize total 
precipitation (meters) data selected four times each 
day at 00, 06, 12, and 18 UTC. It also includes a 
horizontal resolution of approximately 31 kilometers 
(0.25°) and includes 137 vertical levels. 

Additionally, we will utilize a shapefile 
obtained from the United States Census Bureau 
(U.S. Census Bureau 2022) to define the 
geographic boundaries of the central United States. 
By integrating this shapefile with the ERA5 dataset, 
we can accurately map and analyze variables 
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within our specified regions of the Ohio Valley and 
the Upper Midwest. 

We also incorporate daily teleconnection 
indices from various sources to understand their 
influence on extreme rainfall events. The ENSO 
index (Nino 3.4 SST) is obtained from the NOAA 
Physical Sciences Laboratory (NOAA PSL 2023a). 
The indices for the NAO, PNA, WPO, and EPO are 
sourced from the NOAA Physical Sciences 
Laboratory's daily time series (NOAA PSL 2023b). 
The AO index is retrieved from the Climate 
Prediction Center of the National Oceanic and 
Atmospheric Administration (NOAA CPC 2023). 
 
2.2 Data Processing 
 

To gather the necessary precipitation data, 
we utilized Google Earth Engine (GEE) for our 
precipitation analysis. We accessed the ERA5 
monthly averaged data by the hour, integrating it 
with the shapefile obtained from the U.S. Census 
Bureau to focus on our region of interest, the central 
United States. This process allowed us to collect 
total precipitation data exclusively for this region, 
filtered from November to May for the years 1950 to 
2023. For all precipitation data we had converted 
from meters to millimeters and filtered any outlying 
data deemed unfit.  

Next, for our casual discovery, we used the 
University of Oklahoma's Schooner High-
Performance Computing (HPC) system to convert 
our hourly total precipitation data into daily sums for 
the period from 1979 to 2023, focusing on 
November to May. We chose to start from 1979 to 
streamline the project's temporal scale and ensure 
consistency with the more reliable and 
comprehensive datasets available from that year 
onward. This aggregation was essential for aligning 
our precipitation data with daily teleconnection 
indices and for subsequent analysis. 

Finally, we processed our teleconnection 
index values, covering the period from November to 
May 1979 to 2023. This involved formatting the 
indices to match the temporal range of our 
precipitation data. Additionally, we normalized all 
indices to facilitate better comparison and analysis. 
Normalization was crucial for minimizing the impact 
of differing scales and units, thereby enabling a 
more coherent analysis of the relationships 
between teleconnection indices and extreme 
rainfall events. 
 
2.3 Region of Interest  
 

This study focuses on two key regions in 
the central United States: the Ohio Valley (red) and 
the Upper Midwest (blue) as illustrated in Figure 1. 
They are defined by the National Centers for 
Environmental Information of NOAA (NCEI 2024). 
These regions were selected based on their 
susceptibility to extreme rainfall events and their 
unique climatological characteristics. By examining 
these regions, we aim to capture and quantify their 
causal relationships between synoptic features, 
teleconnections, and extreme rainfall. 

The Ohio Valley is known for its complex 
weather patterns influenced by both continental and 
maritime air masses. This region frequently 
experiences significant rainfall events, particularly 
during the spring and summer months, due to its 
location being between the transition zone of humid 
subtropical and continental climates (Harding and 
Snyder 2014; Mallakpour and Villarini 2015). 
Additionally, the Ohio Valley has the highest winter 
moisture variability among the regions studied, 
making it a critical area for understanding its 
precipitation dynamics and teleconnections during 
the cold season (Yang et al. 2023). Previous 
studies have shown that the Ohio Valley is 
significantly affected by teleconnections such as 
the ENSO and NAO, which alter precipitation 
patterns and the frequency of extreme weather 
events (Groisman et al. 2012; Zhang and Villarini 
2019).  

The Upper Midwest is particularly 
vulnerable to extreme rainfall events that can lead 
to severe flooding, especially in the late spring and 
early summer (AghaKouchak et al. 2011). The 
Upper Midwest is influenced by teleconnections 
such as the PDO and ENSO, which affects the 
regional climate variability and extreme weather 
patterns (Groisman et al. 2012; Harding and Snyder 
2014). The Upper Midwest experiences significant 
winter and spring precipitation variability influenced 
by these teleconnections (Yang et al. 2023). 
Studying this region provides valuable insights into 
how teleconnections interact with local weather 
systems and extreme weather formation.  

The selection of these two regions allows 
for an analysis of the causal relationships between 
synoptic features and extreme rainfall events 
across multiple climatological zones. This diversity 
enhances a broader understanding of how 
teleconnections and local synoptic conditions 
interact to form extreme weather events. Using 
causal network-based machine learning models, 
we aim to uncover the complex non-linear 
interactions between these regions. 
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Figure 1. Our region of study making up the central 
United States consisting of the Upper Midwest (green) 

and the Ohio Valley (red) defined by the National 
Centers for Environmental Information of NOAA (NCEI 

2024). 

 
2.4 Time Series Analysis 
 
2.4.1 Annual Total Precipitation 
 

Total precipitation (mm) values will be 
segmented into monthly intervals from November to 
May for each year between 1950 and 2023. This 
temporal range was selected due to the 
pronounced influence of teleconnections during 
these transitional periods. Teleconnections exhibit 
significant impacts on regional weather patterns 
during the fall to spring months (Groisman et al. 
2012; Yang et al. 2023). We analyze annual total 
precipitation data for winter and spring, split into 
three climate normals: 1950-1980, 1980-2010, and 
2010-2023. A climate normal is a 30-year average 
of climatic data, like total precipitation for our 
project, and is used as a standard to compare 
current observations with past data. We hope to 
gain an understanding of precipitation variability 
between winter and spring compared by each 
climate normal. 
 
2.4.2 Monthly Mean Precipitation Analysis 
 

The same climate normal concept was 
used for mean precipitation (mm) by sectioning 

values into 30-year intervals: 1950-1980, 1980-
2010, and 2010-2023. For this analysis, we used 
months for our x-axis to gain an understanding of 
what time of year precipitation was falling the most 
during which climate normal in our region of 
interest. We are apple to visualize a side-by-side of 
winter into spring of when exactly precipitation 
varies between the seasons. 
 
2.4.3 Winter and Spring Precipitation Trends 
 
 For our spatial analysis we wanted the 
representation of areas experiencing significant 
changes in precipitation (mm) patterns during the 
current climate normal period 2010-2023, 
compared to historical maximum averages from 
1950-2010. These spatial trend maps are crucial for 
identifying hotspots of increasing or decreasing 
precipitation. We took the monthly maximum values 
from 2010-2023 and subtracted them from the 
monthly mean maximum values from 1950-2010, 
this then gives us a positive or negative trend value. 
A threshold was applied to determine the positive 
and negative trend: regions with changes of more 
or less than 10 mm from normal were considered to 
have a significant trend, while areas with lower 
magnitude changes were excluded from the 
analysis. 
 
2.5 Causal Networks 
 

Causal networks, also known as causal 
influence models, are powerful tools in climate 
science for uncovering and quantifying the complex 
relationships between various atmospheric 
variables. These networks are constructed using 
nodes that represent variables (such as 
teleconnections like ENSO, AO, NAO, EPO, WPO, 
and PNA) and use directed vectors that denote 
causal relationships between these variables. The 
direction of a vector from one node to another 
indicates that changes in the first variable causally 
influence changes in the second (Kretschmer et al. 
2021; Yang et al. 2023). By applying causal 
influence techniques, these networks help 
differentiate correlation from causation, providing a 
clearer understanding of how different factors 
contribute to extreme weather events. 

One of the main advantages of causal 
networks is their ability to model complex, nonlinear 
interactions within the climate system. Traditional 
statistical models often struggle to capture the 
complicated dependencies and feedback 
mechanisms present in atmospheric processes 
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(Yang et al. 2023). Causal networks, however, are 
designed to handle these complexities, making 
them particularly well-suited for analyzing the 
interactions between teleconnections and extreme 
rainfall events. For our study, we employ the 
PCMCI (Peter and Clark Momentary Conditional 
Independence) method, as detailed by Runge et al. 
(2019), which is specifically developed to deal with 
high-dimensional and autocorrelated time series 
data. 

The PCMCI method begins with data 
collection and preprocessing to ensure data quality 
suitable for analysis. This includes atmospheric 
variables from reanalysis datasets (such as ERA5) 
and teleconnection indices. PCMCI then applies a 
combination of constraint-based and model-based 
approaches to identify potential causal links 
between variables, considering both direct and 
indirect effects. The connections and their strengths 
are represented by the thickness and color of the 
edges (lines) between the nodes (teleconnections 
and Upper Midwest). The edges in the graph are 
color-coded and vary in thickness. Thicker and 
more intensely colored edges represent stronger 
causal relationships. The color gradient from blue 
to red represents the strength and direction of the 
causal relationship (MCI - Momentary Conditional 
Independence). Redder edges indicate positive 
causal effects, while bluer edges indicate negative 
effects. This method effectively reduces the 
complexity of the network by focusing on significant 
causal pathways while controlling for the influence 
of other variables in the dataset (Runge et al. 2019). 

By utilizing the PCMCI method, we can 
robustly estimate the strength and direction of 
causal relationships between teleconnections and 
extreme rainfall events. This approach helps 
elucidate the pathways through which 
teleconnections like ENSO, AO, NAO, EPO, WPO, 
and PNA influence extreme rainfall. The resulting 
causal networks provide a detailed map of these 
interactions, offering valuable insights into the 
mechanisms driving extreme weather events in the 
central United States. 

To practically apply the PCMCI method, we 
first preprocess the data to address issues such as 
missing values and reformatting to our temporal 
resolution. Next, the PCMCI algorithm is run to 
perform momentary conditional independence 
tests, which are crucial for detecting causal links in 
time series data. The algorithm refines the network 
by testing the conditional dependencies between 
variables at multiple time lags. This helps in 
identifying both instantaneous and time-lagged 

causal relationships. Numbers on the edges (e.g., 
1, 2, 5) denote the time lags (in days) at which these 
causal relationships are significant. For instance, a 
link labeled with "1" indicates a one-day lag, 
meaning the causal effect from one node to another 
occurs with a one-day delay. For our study, we had 
first tested a time lag of 30 days but to simplify our 
current discovery, we had chosen a time lag of 10. 
Finally, the significance of these causal links is 
assessed, and the resulting network is interpreted 
to understand the causal mechanisms at play 
(Runge et al. 2019). This systematic approach 
ensures a robust analysis of the causal dynamics 
between teleconnections and extreme rainfall 
events. 

The ability to uncover these complex 
causal relationships is crucial for improving 
predictive models and enhancing our 
understanding of climate dynamics. By integrating 
diverse data sources and revealing hidden 
interactions, causal networks provide a more robust 
framework for predicting and understanding 
extreme rainfall events, thereby contributing to 
more effective climate adaptation and mitigation 
strategies (Runge et al. 2019; Kretschmer et al. 
2021; Yang et al. 2023). 
     
3.  RESULTS 
 
3.1 Time Series Analysis 
 
3.1.1 Annual Total Precipitation 
 

Figure 2 presents the annual total 
precipitation in millimeters for the winter and spring 
seasons across three climate normals: 1950-1980, 
1980-2010, and 2010-2023. Each climate normal is 
represented by different colors for winter and 
spring, making it easier to compare the precipitation 
trends across these periods. 

During the 1950-1980 period, we can see 
the clear indication of seasonal variability between 
winter (blue) and spring (light blue). Winter ranges 
between 100 mm and 200 mm and shows a 
relatively consistent jump between dry and wet 
years, with one exceptionally dry winter in 1976. 
Spring has ranges roughly from 350 mm to 475 mm 
but is showing a larger but also consistent variation 
in precipitation through the years.  

For 1980-2010, at the start of the climate 
normal we see how it remains semi-consistent with 
the period before but with more years having higher 
values. Nearing 2000, the precipitation trends seem 
to change. For winter (red), it seems as though the 
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precipitation accumulation is steading, and 
maximums are lower than before. Although, for 
spring (light red) there is quite the opposite. 
Maximum values are increasing through time and 
becoming more frequent. Overall, the seasonal 
variation is changing in opposite directions.  

For our current climate normal 2010-2023, 
our maximum values for winter (yellow) and spring 
(light yellow) are at their highest ever. Winter seems 
to have a lowering trend in values compared to the 
last period, apart from the wettest winter at around 
250 mm occurring in 2015. Spring on the other 
hand, is showing the largest increase in total 
precipitation with some consistently high seasons 
at around 500 mm and the wettest spring at 550 
mm. Although this is the shortest period of data, the 
graph suggests that the spring season is on the rise 
accumulating more precipitation through the years. 
While winter has a somewhat steady decline in 
precipitation, increasing the variability between 
winter and spring. 
 

 
 
Figure 2. Total Precipitation (mm) distributed by climate 
normal 1950-1980 (blue), 1980-2010 (red), and 2010-
2023 (yellow). The lower histogram depicts winter and 

the upper depicts spring. 
 

3.1.2 Monthly Mean Precipitation Analysis 
 

The graph displays the monthly climate 
normal for the mean precipitation across three 
different time periods: 1950-1980 (blue), 1980-
2010 (red), and 2010-present (yellow). The 
precipitation patterns show a consistent seasonal 
cycle across all three periods, with a pronounced 
peak during the late spring and early summer 
months (April to June). The highest mean 
precipitation values are observed in June for all 
periods, indicating this month as the wettest period 
annually.  

For 1950-1980 (Blue), starting in winter 
with mean precipitation values in decline and at the 
lowest during this time of year but as we go towards 

spring there is a sharp incline through February and 
March with mean values steading out at around 100 
mm in May, being the lowest out of all the climate 
normals.  

Starting in winter of 1980-2010 (Red), we 
can already see the higher mean precipitation on 
the decline as it bottoms out almost exactly as the 
last period. Around the same time at February 
precipitation increases at an almost constant rate 
all the way through up to May. A Maximum of 115 
mm now being higher than the previous climate 
normal by 15 mm.  

2010-2023 (Yellow) shows the highest 
mean precipitation values of all other climate 
normals at around 118 mm, which is a slight 
increase from the last period. A significant 
difference is the presence of the highest 
precipitation values during winter than the others. 
This could be because of the smaller range of data 
we still see all the way to spring that values remain 
the highest for most months.  
 

 
 
Figure 3. Mean precipitation (mm) per month for each 
climate normal 1950-1980 (blue), 1980-2010 (red) and 
2010-2023 (yellow). Between the green lines from Nov 

to May depicts our temporal range of focus. 
 

3.1.3 Winter and Spring Precipitation Trends 
 

The spatial distribution of precipitation 
trends for the central United States is illustrated in 
Figure 4, which highlights regions with positive 
(blue) and negative (red) precipitation trends for 
spring (Figure 4a.) and winter (Figure 4b.) seasons. 
This approach allowed us to identify significant 
changes in precipitation trends over the selected 
periods. A threshold was considered for our positive 
and negative trends: regions with changes of more 
or less than 10 mm from normal were considered to 
have a significant trend, and areas with lower 
magnitude changes were excluded from the 
analysis. This method focuses on regions 
experiencing the most notable shifts in precipitation 
patterns, aligning with previous research 
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methodologies (Groisman et al. 2012; Yang et al. 
2023). 

For the spring season (Fig. 4a), we observe 
widespread regions with positive precipitation 
trends, particularly in northern areas such as 
Minnesota, Wisconsin, and Michigan. There are 
also significant positive trends in parts of Iowa, 
Illinois, and Missouri. Conversely, a band of 
negative precipitation trends is evident across 
southern Michigan, northern Indiana, and parts of 
Ohio, suggesting areas that have experienced a 
decrease in spring precipitation. 

In the winter season (Fig. 4b), positive 
precipitation trends dominate much of the central 
United States, with notable increases in Indiana, 
Illinois, and Ohio. This widespread increase in 
winter precipitation aligns with the overall trend 
towards wetter conditions observed in the temporal 
analysis. There are fewer regions with negative 
trends in winter, but some areas in Indiana and 
Kentucky exhibit decreasing precipitation trends. 

 

 
 

Figure 4. (a) Spring precipitation trends as of 2010-
2023 showing a notable positive trend (blue) for the 

central United States. (b) Winter precipitation trends as 
of 2010-2023 show similar results to spring with a 

notable increase in precipitation. 

 
3.2 Causal Discovery 
 
3.2.1 Upper Midwest 
 

Figure 5 provides a visual representation 
of the causal relationships between different 
teleconnections (PNA, ENSO, EPO, NAO, WPO, 
AO) and their influence on extreme rainfall events 
in the Upper Midwest (UM). The connections and 
their strengths are represented by the thickness 
and color of the edges (lines) between the nodes 
(teleconnections and UM). 

PNA and EPO are shown to each have 
both positive and negative direct causal links to 
the Upper Midwest. These links are significant as 
they suggest that variations in these 
teleconnections directly influence extreme rainfall 
events in the region. Although the arrows from 

PNA and EPO to UM are lighter in coloring 
representing a weaker link, they indicate a 
directional influence, implying that changes in PNA 
and EPO likely lead to changes in the rainfall 
patterns in the Upper Midwest.  

There is no direct causal link from ENSO 
to the Upper Midwest. This absence might suggest 
that ENSO's influence on extreme rainfall in the 
Upper Midwest is either indirect or less significant 
compared to other teleconnections. Whereas NAO 
did not show many causal links to other nodes as 
well other than a strong possible indirect link to the 
AO. Perhaps if we had chosen a longer time lag 
than 10, these direct links would show if more time 
is required. 

AO and WPO are also shown to have 
numerous connections with other teleconnections 
as well as PNA and EPO, suggesting a complex 
interplay that could indirectly affect the Upper 
Midwest. 
 

 
 

Figure 5. Upper Midwest causal discovery between 
teleconnections (ENSO, NAO, PNA, EPO, WPO, and 

AO). These connections and their strengths are 
represented by the thickness and color of the edges 
(lines) between the nodes (teleconnections and UM). 

Red represents a positive relationship and blue 
represents a negative relationship. 

 

3.2.2 Ohio Valley 
 

Figure 6 Illustrates the causal relationships 
between various teleconnections (PNA, ENSO, 
EPO, NAO, WPO, AO) and their influence on 
extreme rainfall events in the Ohio Valley (OV). The 
edges between the nodes indicate the direction, 
strength, and lag of these causal connections. 
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The PNA has an inverse causal 
relationship with the Ohio Valley, as indicated by 
the blue edge connecting PNA to OV. This 
suggests that when PNA experiences a positive 
phase for example, it leads to an inversive effect on 
the Ohio Valley, typically lowering rainfall amounts 
over the Ohio Valley (Leathers et al. 1991). 

Like the Upper Midwest, ENSO does not 
have a direct causal link to the Ohio Valley. This 
implies that ENSO's impact on extreme rainfall in 
the Ohio Valley is either indirect or less significant 
compared to other teleconnections. 
Teleconnections exhibit numerous causal links 
among themselves, indicating a complex network of 
interactions. For example, EPO, AO, WPO, and 
NAO as well as the PNA, all show multiple 
interconnections. These interactions can potentially 
amplify or modulate the influence of individual 
teleconnections on the Ohio Valley. 
 

 
 

Figure 6. Ohio Valley causal discovery between 
teleconnections (ENSO, NAO, PNA, EPO, WPO, and 

AO). These connections and their strengths are 
represented by the thickness and color of the edges 
(lines) between the nodes (teleconnections and UM). 

Red represents a positive relationship and blue 
represents a negative relationship. 

 
 

 
 
4. DISCUSSION 
  
4.1 Time Series Analysis 

 
4.1.1 Annual Total Precipitation  
 

The analysis of annual total precipitation 
(Fig. 2) reveals significant variability in seasonal 
precipitation trends across the different climate 
normals. From 1950-1980 we see a relatively 
stable range of winter and spring precipitation, 
similar to Groisman et al. (2012), who highlighted 
consistent precipitation patterns during these 
decades.  

From 1980 to 2010, we observe a shift 
towards higher precipitation values, particularly in 
spring. This change lines up with findings by 
Leathers et al. (1991), who identified increasing 
precipitation trends in the central U.S. during the 
late 20th century. The contrasting trends between 
winter and spring during this period might suggest 
a changing seasonal distribution, which could be 
influenced by shifts in atmospheric circulation 
patterns (Leathers et al. 1991). 

The current climate normal (2010-2023) 
shows the highest precipitation values, with spring 
having the largest increase of all seasons. This 
aligns with recent studies indicating an 
intensification of the hydrological cycle due to 
global warming (Yang et al. 2023). The observed 
trends suggest that the region may be experiencing 
more frequent and intense precipitation events, 
especially in spring, which could be attributed to 
changes in teleconnections such as the PDO and 
the NAO (Runge et al. 2019). 
 
4.1.2 Monthly Mean Precipitation Analysis 
 
 The monthly mean precipitation analysis 
(Fig. 3) reveals consistent seasonal cycles across 
all periods, with a peak during late spring and early 
summer. The increasing mean precipitation values 
from 1950 to the present suggest a gradual 
intensification of precipitation events. The higher 
mean values observed during the 1980-2010 
period, particularly in May, support Groisman et al. 
(2012)'s findings on increased precipitation 
variability. 

The current period (2010-2023) shows the 
highest mean precipitation values, indicating a 
potential shift towards wetter conditions. This trend 
is consistent with Yang et al. (2023), who reported 
an increase in extreme precipitation events in 
recent years. The significant winter precipitation 
values during this period could be linked to the 
influence of teleconnections such as the AO and 
the WPO, which have been shown to affect winter 
precipitation patterns in the central U.S. (Runge et 
al. 2019). 
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4.1.3 Winter and Spring Precipitation Trends 
 

The spatial distribution of precipitation 
trends highlights notable regional differences. The 
positive precipitation trends in the northern areas 
during spring (Fig. 4a) align with studies indicating 
increased precipitation in the Midwest (Groisman et 
al. 2012). The negative trends in southern Michigan 
and parts of Ohio suggest potential localized drying, 
possibly linked to changes in regional atmospheric 
circulation patterns (Leathers et al. 1991). 

In winter (Fig. 4b), the widespread positive 
trends across the central U.S. align with the overall 
increase in winter precipitation observed in the 
temporal analysis. These trends are consistent with 
the findings of Yang et al. (2023), who reported an 
increase in winter precipitation in the region. The 
few areas with negative trends, such as parts of 
Indiana and Kentucky, may be influenced by local 
factors such as changes in land use and 
urbanization (Groisman et al. 2012). 
 
4.2 Causal Discovery 
 
4.2.1 Upper Midwest 
 

The causal discovery analysis for the 
Upper Midwest reveals significant connections 
between teleconnections and extreme rainfall 
events. The direct causal links from PNA and EPO 
to the Upper Midwest suggest that these 
teleconnections play a crucial role in influencing 
regional precipitation patterns. They both share a 
positive and a negative relationship to the Upper 
Midwest. This might suggest that the influence of a 
certain phase of PNA and EPO on precipitation in 
the Upper Midwest may not be immediate and can 
vary with time lags. For instance, the atmospheric 
circulation changes produced by these 
teleconnections may take days or weeks to 
influence the regions weather patterns. This can 
result in complex relationships where the same 
teleconnection can cause both positive and 
negative impacts depending on the time lag 
considered (Runge et al. 2019).  

The absence of a direct causal link from 
ENSO to the Upper Midwest could be from too short 
of a time lag. Another possibility is that ENSO's 
influence on the central U.S. is more indirect and 
modulated by other teleconnections (Leathers et al. 
1991). The complex network of interactions among 
teleconnections, such as AO and WPO, highlights 
the need for further research to understand the 
combined effects of these patterns on regional 

climate (Runge et al. 2019). Perhaps if we had 
chosen a longer time lag than 10, these direct links 
would show if more time were required for stronger 
relationships to appear. 
 
4.2.2 Ohio Valley 
 

For the Ohio Valley, the inverse causal 
relationship between PNA and extreme rainfall 
events supports previous studies that have shown 
the PNA’s significant impact on regional climate 
variability (Leathers et al. 1991). Other 
teleconnections such as the WPO can interact with 
the PNA since a direct link is shown which could 
have a possible impact on the region. When PNA is 
in its negative phase, it may enhance the moisture 
transport from the Gulf of Mexico and other sources 
into the Ohio Valley, thus leading to an increase in 
precipitation (Leathers et al. 1991). 

ENSO's primary impacts are more 
pronounced in regions closer to the Pacific Ocean, 
such as the western United States, and tropical 
regions (Ropelewski and Halpert 1986). The Ohio 
Valley is further from the direct atmospheric 
circulation produced by ENSO. As a result, ENSO's 
influence on the Ohio Valley could be indirect by 
this manner. The Ohio Valley could be affected 
through changes in other teleconnections or global 
circulation patterns that later affect the region. The 
multiple interconnections among teleconnections, 
such as EPO, AO, WPO, and NAO, suggest a 
complex network that can amplify or modulate the 
influence of individual teleconnections on the Ohio 
Valley. This complexity underscores the importance 
of considering the combined effects of multiple 
teleconnections in climate studies (Runge et al. 
2019). 
 
5. CONCLUSIONS 
 

This study provides significant insights into 
the complex causal relationships between 
teleconnections and extreme rainfall events in the 
central United States, specifically focusing on the 
Upper Midwest and Ohio Valley regions. Utilizing 
causal network-based machine learning models, 
such as the PCMCI method, allowed for a robust 
analysis of these relationships and revealed several 
key findings: 

 

1. Increasing Precipitation Trends: 

Analysis of annual total precipitation and 

monthly mean precipitation indicates a 
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trend towards increasing precipitation, 

particularly in the spring season, over the 

past decades. The 2010-2023 period 

shows the highest precipitation values, with 

significant increases in both winter and 

spring, aligning with recent studies that 

suggest an intensification of the 

hydrological cycle due to global warming. 

The spatial distribution of precipitation 

trends reveals notable regional differences, 

with positive trends observed in Missouri, 

Minnesota, Illinois, and Michigan during 

spring and widespread positive trends 

across Missouri, Illinois, Indian, and 

Tennessee during winter. Although 

negative trends are not as prevalent, but 

observed across small parts of Illinois, 

Indiana, and Michigan during the spring 

and a narrow region of Kentucky and 

Indiana for winter. 

2. Causal Relationships with 

Teleconnections: The causal discovery 

analysis identified significant positive and 

negative direct causal links between the 

Pacific-North American Pattern (PNA) and 

the Eastern Pacific Oscillation (EPO) with 

extreme rainfall events in the Upper 

Midwest. Interestingly, ENSO does not 

show a direct causal link with extreme 

rainfall in these regions, suggesting its 

influence may be indirect or less significant 

compared to other teleconnections. The 

inverse causal relationship between PNA 

and extreme rainfall events in the Ohio 

Valley supports previous studies 

highlighting PNA's impact on regional 

climate variability. 

3. Complex Interactions: Furthermore, the 

study reveals a complex network of 

interactions among various 

teleconnections, including the Arctic 

Oscillation (AO) and the Western Pacific 

Oscillation (WPO), which influence 

extreme rainfall events indirectly through 

their interactions with PNA and EPO. 

These multiple interconnections suggest 

that the combined effects of these 

teleconnections must be considered to 

understand their full impact on regional 

precipitation patterns. The findings 

underscore the limitations of traditional 

statistical models in capturing these 

complex, nonlinear interactions and 

highlight the advantages of using causal 

network-based approaches. This intricate 

network of relationships underscores the 

importance of considering multiple 

teleconnections simultaneously to 

understand their combined effects on 

regional weather patterns. 

4. Future Research Directions: Future 

studies should explore longer time lags and 

additional teleconnections to better 

understand the delayed effects and direct 

influences on regional precipitation 

patterns. Further research is needed to 

refine causal discovery algorithms to 

capture the dynamics of climate systems 

more accurately.  

In conclusion, this study demonstrates the 
utility of causal network-based machine learning 
models in climate science, particularly for 
understanding the drivers of extreme weather 
events. The findings highlight the critical roles of 
PNA and EPO in influencing extreme rainfall in the 
central United States and emphasize the 
importance of considering complex interactions 
among multiple teleconnections. These insights 
can inform the development of more effective 
predictive models and mitigation strategies, 
ultimately contributing to better preparedness in the 
face of changing climatic conditions. 
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